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Abstract 

This research models the concentration of two substances in three-

dimensional space with a reactiondiffusion system. The underlying 

partial differential equations (PDEs) are solved numerically using the 

finite difference method. Simulation results show the spatial and 

temporal variation of the concentrations of the substances, influenced by 

the diffusion, reaction, and boundary constants. This study introduces an 

innovative 3-dimensional modeling tool specifically designed to enhance 

students' understanding of complex diffusion reaction systems. Through 

the interactive 3-dimensional modeling tool students can observe how 

these substances diffuse and react over time, offering a dynamic way to 

explore complex scientific concepts. The result of the research with this 

tool is that it can significantly improve the learning process by 

transforming theoretical knowledge into practical, real-world 

understanding. 

Keywords: finite difference method, numerical methods, partial 

differential equations, reaction-diffusion, three-dimensional space 

 

INTRODUCTION 

Understanding the principles of diffusion reaction systems is an important aspect of science 

education, as this process is the basis of many disciplines, including chemistry, biology and 

environmental science (Schmitt et al., 2022). Traditional teaching methods, while effective in 

conveying basic concepts, often fall short in providing students with a comprehensive 

understanding of concepts that are sometimes abstract and difficult for students to grasp (Lian et al., 

2022). 3-Dimensional modeling provides a transformative approach to this challenge by offering a 

powerful and immersive way for students to visualize and interact with these systems. Through the 

use of 3D models, students can observe how substances move and react in a given space, explore 
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and see the direct impact on the system (Alexander et al., 2024). This direct interaction not only 

makes the learning process more engaging, but also significantly improves students' understanding 

of complex scientific concepts, bridging the gap between theoretical knowledge and practical 

application.According to Kalogeris and Papadopoulos (2021), the diffusion equation is a partial 

differential equation that represents the movement of a substance in a solvent from a high 

concentration part to a low concentration part. Muñoz-Gil et al. (2019)states that, each diffusion 

particle moves randomly in the diffusion field. The diffusion equation can be used to describe the 

spread of mass transfer such as the spread of oxygen concentration in a body tissue, environmental 

pollution, and chemical fluids. 

According to previous study (Pinar, 2021), Reaction-Diffusion Equations occur naturally in 

systems formed by the interaction of many components and are widely used to describe various 

biological, chemical and physical systems. (Li et al, 2020) stated that, reaction-diffusion systems have 

attracted considerable attention in recent years. They appear naturally in various chemical models 

to describe spatiotemporal concentration changes of one or more chemical species involving local 

chemical reactions and diffusion simultaneously. Chemical reactions transform substances from one 

form to another and diffusion processes cause substances to spread throughout the spatial domain. 

The reaction-diffusion system consists of a set of partial differential equations (PDEs) to represent 

the behavior of each chemical species individually. 

According to previous study (Ishtiaq Ali & Malika Tehseen Saleem, 2023), Partial differential 

equations (PDEs) are used for the mathematical formulation of many real-world problems in various 

fields of science and engineering. The most common types are hyperbolic, parabolic, and elliptic. 

These types of partial differential equations are used to model several physical phenomena. Many 

natural situations, such as biological or human, mechanical, chemical, or financial systems, can be 

described by systems of partial differential equations. (Raviprakash et al. (2022) stated that, the 

implicit finite difference method is used to solve 2D and 3D second-order partial differential 

equation systems.  

Saylors and Trafimow (2020) also stated, along with complex facts, the ordinary differential 

equations formed are also increasingly complex, so that analytical solutions cannot be obtained. 

Therefore, many methods are formulated to obtain high accuracy approximation solutions for these 

differential equations or called numerical methods. The system represented by the Gray-Scott model 

is the autocatalytic Selkov variant of glycolysis developed by Gray and Scott. This model takes the 

form of the following equation: (Gray, P & Scott, S.K, 2012). 

 

𝑢𝑡 = 𝐷𝑢∇2
𝑢 − 𝑢𝑣2 − 𝐹(𝑢 − 1), 

 

𝑣𝑡 = 𝐷𝑢∇2
𝑢 − (𝐾 + 𝐹)𝑣 + 𝑢𝑣2 

 

Where U and V represent the concentrations of chemicals U and V. The rate of change of 

concentration with respect to time is determined by the chemical reaction rate which depends on the 

concentration of the other chemical and by diffusion which is modeled by the Laplacian of 
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concentration with respect to space. 𝐷𝑢 and 𝐷𝑣 are diffusion coefficients for concentration, F is the 

rate of entry, and K is a dimensionless rate constant (Olaye & Ojo, 2021).   

According to Ahn et al. (2024), 3D programming is a broad field that covers a wide variety of 

topics, including 3D modeling, 3D animation, and 3D graphics. In the context of programming, 3D 

programming refers to the use of programming languages to create applications that can generate 

3D graphics. Riggi et al. (2024) states that, 3D programming refers to the process of creating 

computer programs that can produce 3D graphics. 3D graphics are visual representations of objects 

and scenes created using mathematical models. These models are then rendered into images or 

videos that can be viewed on a computer screen.    

Park et al. (2022) also stated that, 3D programming continues to evolve with the emergence of 

new technologies. For example, the rise of machine learning and artificial intelligence opens up new 

possibilities for creating realistic and interactive 3D graphics. As a result, 3D programming is likely 

to play an increasingly important role in our lives in the future. 

METHOD 

Partial Differential Equation (PDE) Method  

John et al. (2019) states that, the two most commonly known types of differential equations are 

ordinary differential equations and partial differential equations. Ordinary differential equations 

consist of derivatives consisting of one variable, while partial differential equations consist of 

derivatives consisting of two or more independent variables. Heat, wave, and telegraph equations 

are some examples of cases that are usually found in the process of mathematical modeling in the 

form of partial differential equations (Mahmudah et al. 2024; Raya et al. 2024).   

The classification of partial differential equations is also based on the same elements, namely 

order, linearity, and boundary conditions. The order of a partial differential equation is determined 

based on the order of the highest derivative in the partial differential equation. For example, the 

following differential equations are first, second, and third order equations:  

 

PDE First order: 
𝜕𝐶

𝜕𝑥
− 𝛼

𝜕𝐶

𝜕𝑦
= 0 

PDE Second order: 
𝜕2𝐶

𝜕𝑥2 − 𝐷𝑒
𝜕𝐶

𝜕𝑦
= 0   

PDE Third order: (
𝜕3𝑢

𝜕𝑥3)
2

+
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑢

𝜕𝑦
= 0  

 

The following partial differential equation is a form of second-order differential equation:  

𝑎(. )
𝜕2𝑢

𝜕𝑦2
+ 2𝑏(. )

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑐(. )

𝜕2𝑢

𝜕𝑥2
+ 𝑑(. ) = 0 

The Finite Difference Method  

According to Vargas (2022), the finite difference method is one of the basic tools for numerical 

solving of differential equations.  In general, the process of solving this method begins by dividing 



Current STEAM and Education Research 

Situmorang et al. 

https://doi.org/10.58797/cser  112 

CSER 

the independent variables in the differential equation into count points or what is called a grid.   In 

simple terms, this method is applied by replacing each derivative in the differential equation using 

a finite difference approximation formed by the Taylor series.  In this method, the distance between 

points is defined as equal or uniform grid.  The results of this approach depend on the distance 

between the points chosen, the smaller the distance chosen, the more accuracy is obtained.  

According to Ding et al. (2023), the finite difference method will be used to solve the differential 

equation that has been modeled by applying several predetermined boundary conditions. Because 

the solution of the numerical calculation results is an approximate or approximate solution, the error 

of the numerical calculation will be found.  

   

Approximation of first-order differential terms with forward difference:  

𝑑𝐶

𝑑𝑥
≅

𝐶𝑖+1,𝑗 − 𝐶𝑖,𝑗

ℎ
  𝑎𝑛𝑑 

𝑑𝐶

𝑑𝑦
≅

𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗

𝑘
 

𝑑𝐶

𝑑𝑦
≅

𝐶𝑖,𝑗
𝑚+1 − 𝐶𝑖,𝑗

𝑚

∆𝑡
 

Approximation of 2nd order differential terms: 

  

𝜕2𝐶

𝜕𝑥2
=

𝐶𝑖+1,𝑗 − 2𝐶𝑖,𝑗 + 𝐶𝑖−1,𝑗

ℎ2
𝑑𝑎𝑛 

𝜕2𝐶

𝜕𝑦2
=

𝐶𝑖,𝑗+1 − 2𝐶𝑖,𝑗 + 𝐶𝑖,𝑗−1

𝑘2
 

(Oktavia, 2018)  

  

Reaction-Diffusion System Algorithm  

a. Function Algorithm def animate(i):  

1. Calls plt.clf() to clean up the current plot so that it does not overlap with the previous 

animation frame.  

2. Extracting and Reshaping Data D1 and D2 according to the grid shape.  

3. Creating Subplots for u1 and u2  

• Creating the first (ax1) and second (ax2) subplots with 3D projection.  

• Use 3-Dimensional scatter to create 3D plots of the u1 and u2 data, with flattened X 

and Y coordinates (flat_X and flat_Y).  

• Set the subplot title with the appropriate time (sol.t[i]), as well as labels for the X, Y, 

and Z axes. 

4. Save the current plot as a PNG image with a filename formatted by index i, in the 

output_dir directory.  

5. Returns a figure object (fig) in the form of a tuple, which is required by Matplotlib's 

animation functions.  

  

b. Function Algorithm def reaction_diffusion(t, u, D1, D2, shape):  

1. Data Initialization and Reshaping:  
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• u is the combined vector of u1 and u2, which is decomposed into two separate 3-

Dimensional arrays based on the shape.  

• u1 is obtained from the initial part of the vector u and reshaped according to the 

shape.  

• u2 is obtained from the end part of the vector u and reshaped according to the 

shape.  

2. Calculating Laplacings:  

• The overlay of u1 is calculated using np.roll to sum the neighboring values in the 

three axes (x, y, z) and subtracted by 6 times the original value to get the overlay 

operator.  

• The laplation of u2 is calculated in the same way.  

3. Calculating the Time Derivative:  

• du1_dt is calculated by the formula: 𝐷1*laplacian_u1+𝑢1*(1−𝑢1)−𝑢1*𝑢2  

• du2_dt is calculated by the formula: 𝐷2*laplacian_u2+𝑢1*𝑢2−𝑢2  

 

 

4. Combining and Returning Results:  

• Combines the flattened du1_dt and du2_dt into one vector.  

• Returns the merged vector as output.  

  

c. Main Algorithm  

1. Start   

2. Import the required libraries  

3. Define the 3-Dimensional domain by using meshgrid from NumPy to create a 3D grid of 

the specified points.  

4. The meshgrid that has been created is then “flattened” to make data manipulation easier. 

This means that each x, y, and z coordinate is represented as a one-dimensional array.  

5. Defined the `reaction_diffusion` function which represents the reactiondiffusion 

equation.  

6. Defines the initial conditions `u1_0` and `u2_0` given in the form of the corresponding 

sine and cosine functions. These two initial conditions are then combined into one array 

that represents the initial conditions of the system.  

7. Using `solve_ivp` from SciPy to solve partial differential equations (PDE) in the 3-

dimensional domain using the `reaction_diffusion` function.  

8. The numerical solution obtained is then reshaped to a suitable shape and then plotted.  

9. Create animation by using `FuncAnimation` from `Matplotlib`. At each iteration, the 

numerical solution at a certain point in time is used to update the animation plot.  

10. Display the animation that has been created  

11. Finish  
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RESULTS AND DISCUSSION 

Diffusion is the flow or movement of substance molecules from a high concentration to a low 

concentration. The difference in concentration that exists in two solutions is called a concentration 

gradient. The diffusion process involves at least two substances, one of which has a higher 

concentration than the other or is not in equilibrium. In diffusion, the diffusion coefficient is known. 

The diffusion coefficient is a parameter that expresses the magnitude of the charge carrier 

concentration gradient. This coefficient is not fixed like a constant in general. This happens because 

the value of the diffusion coefficient is influenced by particle size, membrane thickness, area, 

distance between two concentrations and temperature. The larger the diffusion coefficient, the faster 

the diffusion process will occur. The basic model used in diffusion research is usually Fick's law, but 

its form will vary according to the assumptions of the researcher. According to Fick's Law I, the rate 

of diffusion in the x-direction is proportional to the concentration gradient, while according to Fick's 

Law II, the change in concentration over time in a given region is proportional to the change in 

concentration difference at that point. Fick's Law has the advantage of clearly depicting mass 

transfer from higher to lower concentrations, but has the disadvantage that diffusion will stop if it 

is in an equilibrium state.  

3-Dimensional Visualization  

  

  
Figure 1. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.00 with python 
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Figure 2. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.10 with python 

  

  
Figure 3. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.20 with python  

  

  
Figure 4. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.30 with python 
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Figure 5. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.40 with python  

  

  
Figure 6. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.51 with python 

  

  
Figure 7. 3-Dimensional visualization of substance concentrations u1 and u2 at t=0.61 with python 
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Analysis of Results  

The model used in this analysis is a three-dimensional reaction-diffusion system involving two 

variables u1 and u2. The system is described by a partial differential equation (PDE) that includes a 

laplacian component to capture the diffusion phenomenon as well as several reaction terms that 

describe the interaction between the two variables. The diffusion coefficients D1 and D2 were each 

set at 0.1. The diffusion equations for both variables include laplacian components that calculate the 

changes in u1 and u2 due to diffusion, while the reaction equations capture the dynamics of the 

interaction between u1 and u2. The initial conditions for u1 and u2 were set using sine and cosine 

functions to provide spatial variation in the three-dimensional domain.  

We use the `solve_ivp` method of SciPy to solve these partial differential equations in the time 

range from 0 to 10, with 100 evaluation points. This solution gives the values of u1 and u2 at various 

time points in the specified spatial domain. The visualization is done in the form of a 3-Dimensional 

animation showing the evolution of u1 and u2 concentrations over time. In the left subplot, we see 

the three-dimensional distribution of u1, while in the right subplot, we see the three-dimensional 

distribution of u2. Both graphs show how u1 and u2 are distributed in space and how their 

concentrations change.   

Dynamic analysis shows that initially the concentration distribution is determined by the initial 

conditions (sine and cosine functions). Over time, a more complex pattern emerges due to the 

interaction between u1 and u2 and diffusion in the domain. The laplation term indicates that both 

variables undergo diffusion, which tends to smooth out the concentration difference in space. 

Meanwhile, the reaction term introduces a new pattern that varies depending on the nature of the 

interaction between u1 and u2. The interaction between u1 and u2 indicates that changes in the 

concentration of one variable affect the other, with variations in u1 often followed by variations in 

u2, reflecting their complex interactions.  

This animation helps us understand how two substances interacting through the process of 

reacidiffusion can change over time in a three-dimensional domain. The patterns and concentration 

distributions of u1 and u2 show the combined effects of diffusion and reaction, resulting in complex 

phenomena such as non-linear spatial and temporal patterns. This approach can be applied in a 

variety of fields, including chemistry, biology, and materials physics, where reaction and diffusion 

processes often occur simultaneously. Understanding the dynamics of these systems can help in 

designing experiments, predicting system behavior, and further developing models for more 

complex studies.  

CONCLUSION 

The conclusion of this analysis shows that a three-dimensional reaction-diffusion system with 

two variables, u1 and u2, describes a complex phenomenon where diffusion and reaction 

interactions together create dynamic patterns in the spatial domain. Initial conditions defined by 

sine and cosine functions evolve into more complex concentration distributions over time, 
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influenced by diffusion processes that smooth out concentration differences and reactions that 

introduce new variations.  

The 3-Dimensional animation provides a deep visual insight into the evolution of u1 and u2 

concentrations, highlighting their interactions and changes in spatial patterns. This understanding 

is important in the context of various disciplines, such as chemistry, biology and materials physics, 

where reaction and diffusion processes occur simultaneously, and can be used to design 

experiments, predict system behavior and develop more complex models for follow-up studies.   

Based on the analysis, it is recommended to extend the study to include variations in the 

diffusion coefficient and reaction parameters to better understand how changes in these parameters 

affect the system dynamics. Additional experiments with different initial conditions may also 

provide insight into the stability and sensitivity of the patterns formed. 

In addition, using higher spatial and temporal resolution can improve the accuracy of the results 

and help in capturing more subtle phenomena. The application of more advanced numerical 

methods or computational parallelization can speed up the simulation and allow exploration of a 

larger domain. Finally, integrating real experimental data can validate these models and make them 

more relevant for practical applications in fields such as biology, chemistry, and materials 

physics.Based on the results of research and data analysis on classroom action research (CAR) which 

has been carried out for 3 cycles, it is seen that there is an increase in learning outcomes, teacher and 

student activities, the ability of teachers to manage learning, and good student responses to the 

application of the PBL model. 
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