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Abstract 

This study discusses the comparison of two finite difference methods, 

namely the explicit method and the Crank-Nicolson method (implicit), 

in simulating heat propagation in a metal rod. Heating is done by 

lighting a candle under the metal rod which is then extinguished after 

some time. This research aims to improve students' understanding of 

heat distribution in metal rods through an interactive method based on 

the Finite Difference Method, which is also expected to improve the 

ability to analyze and apply physics concepts in a practical context. The 

simulation results show that the explicit method requires very small time 

steps to achieve good stability, resulting in longer computation times. On 

the other hand, the Crank-Nicolson method demonstrates better and 

more consistent numerical stability, even with larger time intervals. 

Experimental modifications with varying time intervals show that the 

Crank-Nicolson method remains stable and provides more accurate 

results compared to the explicit method. Therefore, the Crank-Nicolson 

method is more recommended for long-term simulations requiring high 

stability and accuracy. 

Keywords: crank-nicolson, diffusion equation, explicit method, finite 

difference, implicit method, thermal diffusion 

 

INTRODUCTION 

Computation is the process of finding a solution to a problem expressed in a mathematical 

model (Zhang & Yang, 2024). One application of computing can be found in the study of physics 

problems, which are usually discussed in the field of computational physics. Computational physics 

involves the combination of physical phenomena based on the principles of the laws of physics, 
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numerical methods, and computer programming (Weller et al., 2022). Through computational 

physics, we can solve various complex physics problems, including problems involving partial 

differential equations (Jung et al., 2024). 

Differential equations that contain partial derivatives are called partial differential equations 

(PDP) (Li & Carvalho, 2024). Simply put, a partial differential equation is an equation that contains 

partial derivatives of an unknown function. This is different from ordinary differential equations, 

where the unknown function depends on one variable and all derivatives are ordinary derivatives. 

Many algorithms used for numerical simulation of physics problems solve discrete approximations 

of partial differential equations (PDPs). These PDPs are derived in the framework of differential 

calculus and can be formulated in terms of coordinate-invariant first-order differential operators 

such as the gradient of a scalar or vector, the divergence of a vector or tensor, and the curl of a vector. 

PDPs express fundamental physical laws such as conservation of mass, momentum, and total energy 

in fluid flow, or Faraday, Maxwell-Ampére, and Gauss laws in electromagnetism (Yong, 2020). 

In partial differential equations, the unknown function u, or dependent variable, depends on 

two or more independent variables. Usually in describing natural phenomena the dependent 

variable u will depend on one or more space variables x,y,z and time t. Sometimes the dependent 

variable depends on space variables only. (Farlow, 1994). In his book also Farlow (1994) mentioned, 

there are four common partial differential equations. Among them are as follows:  

𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2    (𝑂𝑛𝑒 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 ℎ𝑒𝑎𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)                      

𝜕2𝑈

𝜕𝑡2
=

𝜕2𝑈

𝜕𝑥2
   (𝑂𝑛𝑒 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑤𝑎𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2

𝜕2𝜙

𝜕𝜃2
= 0   (𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) 

𝜕2𝑈

𝜕𝑡2
= 𝛼2 (

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2 )  (𝑇𝑤𝑜 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑤𝑎𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

Of the four partial differential equations above, one of them will be discussed, namely the one-

dimensional heat equation or it can be called thermal diffusion. The diffusion equation is a linear 

partial differential equation that represents the movement of a part from a high concentration to a 

low concentration part (Kalogeris & Papadopoulos, 2021). Heat transfer always occurs from higher 

temperatures to lower temperatures as described by the second law of thermodynamics (Dowling 

et al., 2020). The general formula of the thermal diffusion equation is expressed as follows : 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

  𝜕𝑥2
 

  

where the parameter α is called thermal diffusivity, and its value depends on the type of metal 

rod. This equation is also called the parabolic partial differential equation (Farlow, 1994). 

 

Parabolic partial differential equations are a type of equation used to model various physical 

phenomena such as heat diffusion, fluid flow, and stochastic processes. Parabolic partial differential 

(1) 

(2) 

(3) 

(4) 

(5) 
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equations are mostly one-dimensional heat equations (conduction equations) (Sofiani, 2023). These 

equations have a general form that includes both time and space derivative components, and are 

used to analyze the dynamics of systems that change over time. Many researchers have worked on 

the famous parabolic partial differential equation (one-dimensional heat conduction equation) using 

various numerical methods but of all the numerical methods the most widely used is the finite 

difference method (Johnson & Oluwaseun, 2020). There are many types of finite difference 

approaches used to solve the heat equation. There are two finite difference methods that can be used 

to solve the one-dimensional heat equation, namely the explicit finite difference method and the 

implicit finite difference method (Lang & Schmitt, 2023). 

Teaching heat distribution has its own challenges as it involves abstract concepts that are 

difficult for students to visualize (Mitropoulos et al., 2023). As a result, they may have difficulty in 

linking theory to practical applications, which can hinder their deep understanding and ability to 

apply these concepts in real situations. Using traditional methods often relying on theoretical 

explanations and mathematical formulas, can fail in helping students understand the dynamic 

nature of heat flow and its dependence on variables such as temperature, time, and material 

properties (Yao et al., 2022). 

METHOD 

Learning Design 

This learning is designed to enhance students' understanding of the concept of heat distribution 

in rods. Learning is structured based on the steps in calculating equations up to the steps of 

developing learning using simulations. This approach ensures that learners can firmly develop the 

foundation of a concept before moving on to more complex topics or concepts. Each student has a 

different learning style; therefore, the learning developed contains various interactive elements to 

clarify concepts both visually and mathematically. In understanding a concept, there are times when 

the approach to learning can provide benefits in terms of collaborative learning, where students can 

work individually or in teams to solve a given problem. Thus, it can indirectly foster communication 

skills and the ability to collaborate effectively, which are useful for deepening students' 

understanding of a concept. 

Explicit Method  

The finite difference explicit method is one of the numerical approaches used to solve partial 

differential equations such as the diffusion equation. This method approximates the derivative in 

the partial differential equation by using forward differences or backward differences in time, as 

well as center differences in space. 

In the context of heating a metal rod with the diffusion equation 
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

  𝜕𝑥2 the explicit finite 

difference method replaces the first derivative with a forward or backward difference in time, and 

the second derivative with a center difference in space. Mathematically, this can be represented as : 
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𝜕2𝑇

𝜕𝑥2
=

𝑇𝑖+1 
𝑙 − 2𝑇𝑖

𝑙 + 𝑇𝑖−1
𝑙

∆𝑥2
  

 

A forward finite difference approach is used to approximate the time derivative as follows : 

 

𝜕𝑇

𝜕𝑡
=

𝑇𝑖 
𝑙+1−𝑇𝑖

𝑙

∆𝑡
  

 

Substituting Equations (6) and (7) into Equation (5) yields: 

 

𝑇𝑖
𝑙+1 − 𝑇𝑖

𝑙

∆𝑡
= 𝛼

𝑇𝑖+1 
𝑙 − 2𝑇𝑖

𝑙 + 𝑇𝑖−1
𝑙

∆𝑥2
 

 

Which can be solved  

𝑇𝑖
𝑙+1 = 𝑇𝑖

𝑙 + 𝜆(𝑇𝑖+1 
𝑙 − 2𝑇𝑖

𝑙 + 𝑇𝑖−1
𝑙 ) 

 

where 𝜆 =
𝛼𝛥𝑡

  𝛥𝑥2 is called the mesh ratio parameter (Chapra & Canale, 2010).  

In equation (9) 𝑇𝑖
𝑙+1 is expressed explicitly in the form 𝑇𝑖−1

𝑙 , 𝑇𝑖
𝑙 and 𝑇𝑖+1

𝑙 .  Therefore, this formula 

is called an explicit formula for solving the one-dimensional heat equation. It can be shown that 

Equation (9) is valid only for 0 ≤  𝜆 ≤  
1

2
 , which is referred to as the stability condition for the 

explicit formula. Using the initial conditions in Equation (9), we get a system of linear equations for 

n = 0,1,2.... These linear equations are solved to obtain a new time step solution. If we fix  𝜆 =
1

2
 in 

equation (9), we obtain a simple formula: 

 

𝑇𝑖
𝑙+1 =

1

2
(𝑇𝑖+1

𝑛 + 𝑇𝑖−1
𝑛 ) 

Implicit Method 

The implicit finite difference method is a numerical technique used to solve partial differential 

equations (PDPs). Unlike explicit methods, it involves solving a linear system of equations at each 

time step, which allows for better stability even with larger time steps. In the implicit approach, the 

solution to a set of finite element equations involves iteration until a convergence criterion is met for 

each step. The word 'implicit' in this paper refers to a method in which the state of the finite element 

model is updated from time 𝑡 to 𝑡 + 𝛥𝑡. A fully implicit procedure means that the state at 𝑡 + 𝛥𝑡 is 

determined based on information at time 𝑡 + 𝛥𝑡, while explicit methods solve for 𝑡 + 𝛥𝑡 based on 

information at time t (Harewood & McHugh, 2007). 
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This method approximates partial derivatives in an implicit way, where the values at the next 

time (𝑛 + 1) are used in the current calculation (n). For example, for the diffusion equation, this 

method often uses the Crank-Nicolson scheme. The Crank-Nicolson scheme is one of the 

development schemes of the explicit and implicit schemes, which is the average value of the two 

methods. However, the form of the Crank-Nicolson scheme is an implicit scheme. The advantage of 

this method compared to other finite difference methods is that it is unconditionally stable. In the 

Crank-Nicolson scheme, the differential with respect to time 𝑡 is written in the form of a forward 

difference (Msmali et al., 2021). 

The Crank-Nicolson method provides an alternative implicit scheme that has second-order 

accuracy in space and time. To provide this accuracy, a difference approach is developed at the 

midpoint of the time step. To do this, the first derivative of time can be approximated at 𝑡𝑙+1/2 by: 

 

𝜕𝑇

𝜕𝑡
≅

𝑇𝑖
𝑙+1 − 𝑇𝑖

𝑙

∆𝑡
 

 

 The second derivative in space can be determined at the midpoint by averaging the difference 

approaches at the beginning (𝑡𝑙) and end (𝑡𝑙+1)  of the time step: 

 

𝜕2𝑇

𝜕𝑥2
≅

1

2
[
𝑇𝑖+1

𝑙 − 2𝑇𝑖
𝑙 + 𝑇𝑖+1

𝑙

(∆𝑥)2 +
𝑇𝑖+1

𝑙+1 − 2𝑇𝑖
𝑙+1 + 𝑇𝑖−1

𝑙+1

(∆𝑥)2
] 

Substituting equations (11) and (12) into equation (5), yields: 

−𝜆𝑇𝑖−1
𝑙+1 + 2(1 + 𝜆)𝑇𝑖

𝑙+1 − 𝜆𝑇𝑖+1
𝑙+1 = 𝜆𝑇𝑖−1

𝑙 + 2(1 − 𝜆)𝑇𝑖
𝑙 + 𝜆𝑇𝑖+1

𝑙  

 

Where 𝜆 =
𝛼∆𝑡

(∆𝑥)2. As with the simple implicit approach, the boundary condition 𝑇0
𝑙+1 = 𝑓

0
(𝑡𝑙+1) 

can be determined to derive versions of Equation (13) for the first and last interior nodes. For the 

first interior node : 

2(1 + 𝜆)𝑇1
𝑙+1 − 𝜆𝑇2

𝑙+1 = 𝜆𝑓0(𝑡𝑙) + 2(1 − 𝜆)𝑇1
𝑙 + 𝜆𝑇2

𝑙 + 𝜆𝑓0(𝑡𝑙+1) 

and for the last interior node: 

−𝜆𝑇𝑚−1
𝑙+1 + 2(1 + 𝜆)𝑇𝑚

𝑙+1 = 𝜆𝑓𝑚+1(𝑡𝑙) + 2(1 − 𝜆)𝑇𝑚
𝑙 + 𝜆𝑇𝑚−1

𝑙 + 𝜆𝑓𝑚+1(𝑡𝑙+1)  

Although Equations (14) and (16) are slightly more complicated compared to the usual implicit 

Equations, they are tridiagonal and therefore efficient to solve. 

The Crank-Nicolson method is often used to solve linear parabolic PDEs in one space 

dimension. Its advantages become more prominent for more complicated applications such as those 

involving unequally spaced meshes. The non-uniform mesh arrangement is often advantageous 

when we have prior knowledge that the solution varies rapidly at localized parts of the system 

(Chapra & Canale, 2010). 

In the research of Panigrahi et al. (2019) there are four types of numerical methods that have 

been used for the prediction of various thermo-physical and mass transfer in grain storage, namely 

the finite difference method (FDM), finite element method (FEM), finite volume method (FVM) and 
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discrete element method (DEM). In these methods, partial differential equations (PDEs) allocated to 

each layer, element or control volume undergo further simplification into discrete linear equations 

leading to convergent approximation of solutions at different nodes. Four different time 

discretization schemes are followed to predict the variation of temperature and moisture content 

with time namely Galerkin, Euler backward and forward stepped and Crank-Nicolson schemes. 

Among all mentioned stepped methods, Crank-Nicolson was found to be the best as it gives second 

level accuracy on time and was used for simulation. The equation discussed in the research of 

Sanjaya and Mungkasi (2017) is also a parabolic partial differential equation that can be solved 

effectively using the finite difference method. This method is based on direct discretization of the 

differential equation, which allows approaching the solution through numerical techniques. In 

particular, the solution of the parabolic partial differential equation shows continuity, even when 

the initial conditions are discontinuous (Sanjaya & Mungkasi, 2017). 

Therefore, the purpose of this study is to explain the difference between implicit and explicit 

finite difference methods in solving the diffusion equation for a scenario of heating a metal rod in 

the center with constant end conditions.  In this experiment, a homogeneous metal rod of length 𝑙 is 

placed on top of a heat source right in the center, while insulators are placed at both ends to maintain 

zero temperature. The heating process is carried out by lighting a candle under the metal rod, which 

is then turned off after some time. An analysis was conducted to see the difference between the 

implicit and explicit finite difference approaches in determining the temperature distribution along 

the metal rod during the heating and cooling process. It is hoped that the results from this study can 

provide better insight in choosing the most suitable numerical method for simulating diffusion 

phenomena in cases like this. 

COMPUTATIONAL METHOD 

Figure 1. Heat propagation in Metal Rods 

 

The case to be sought is the Comparison of Explicit and Implicit Finite Difference Schemes on the 

Diffusion Equation for Heating a Metal Rod in the Center with Constant Conditions at the Ends. 

Given a candle and a homogeneous metal rod of length 𝑙. The candle is placed under the metal rod 

right in the center, then given an insulating object placed at both ends. In this case, the insulator 
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serves to maintain the temperature at both ends of the metal at zero degrees. After that, the candle 

is lit for some time, then the candle is turned off. For a clearer illustration, see Figure (2). 

Figure 2. Illustration of heating a metal rod 

 

The heat distribution illustrated in Figure (2) will be determined by equation (5) when 0 <  𝑥 <

 𝑙, for every 𝑡 >  0. Then given the initial value 𝑇(𝑥, 0) = 𝑥(𝑙 −  𝑥), 0 <  𝑥 <  𝑙, with the boundary 

condition 𝑇(0, 𝑡) = 𝑇(𝑙 , 𝑡) = 0 for every 𝑡 > 0. The problem will be solved using explicit and implicit 

finite difference methods. 

Furthermore, a simulation of heat propagation on a heated metal rod is carried out. If the length 

of the metal rod is taken as 𝑙 = 𝜋 = 3,14 unit length, the domain 0 ≤ 𝑥 ≤ 3,14 is obtained In this case, 

heat propagation will be observed for 2 units of time, so the domain 0 ≤ 𝑡 ≤ 2 is obtained.  

 

Algorithm 

 

Explicit Method  

1. Start  

2. Initialize Parameters:L, T, α, dx, dt  

Calculate the number of space and time steps: 

2.1 Calculate the number of space steps 𝑁𝑥 as int(L/dx)+1. 

2.2 Calculate the number of time steps Nt as int(T/dt)+1. 

3. Position and Time Matrix : 

3.1 Create a linear array for position 𝑥 from 0 to 𝐿 with 𝑁𝑥 steps. 

3.2 Create a linear array for time 𝑡 from 0 to 𝑇 with 𝑁𝑡 steps. 

4. Initialize the Temperature Matrix : 

4.1 Create a temperature matrix u of size Nt×Nx. 

4.2 Initialize all elements of the temperature matrix u with zero. 

4.3 Set the initial condition u[0,:] with the formula u(0,x)=x⋅(L−x) 

5. Explicit Scheme: 

5.1 Calculate the value r as α⋅dt/dx^2 

5.2 For each time step n from 0 to Nt−2: 

5.2.1 For each position i from 1 to Nx−2: 

5.2.1.1 Calculate the value  u[n+1,i] as u[n,i]+r⋅(u[n,i+1]−2⋅u[n,i]+u[n,i−1]). 

6. Plotting Results: 

6.1 Plot the simulation results at certain times to see the heat propagation. 

6.2 Add labels, titles, and grids to the plots for easier interpretation. 

7. Finish  
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Crank-Nicolson (Implicit) Method  

1. Start  

2. Initialize the parameters: L, T, α, dx, dt  

3. Calculate the number of time and space steps : 

3.1 Calculate the number of space steps 𝑁𝑥 as int(L/dx)+1. 

3.2 Calculate the number of time steps Nt as int(T/dt)+1. 

4. Position and Time Matrix: 

4.1 Create a linear array for position 𝑥 from 0 to 𝐿 with 𝑁𝑥 steps. 

4.2 Create a linear array for time 𝑡 from 0 to 𝑇 with 𝑁𝑡 steps. 

5. Initializing the Temperature Matrix : 

5.1 Create a temperature matrix u of size Nt×Nx. 

5.2 Initialize all elements of the temperature matrix u with zero. 

5.3 Set the initial conditions u[0,:] with the formula u(0,x)=x⋅(L-x). 

6. Crank-Nicolson scheme: 

6.1 Calculate the value of r as α⋅dt/𝑑𝑥2. 

6.2 Create matrices 𝐴 and 𝐵: 

6.2.1 𝐴=diag((1+2⋅𝑟)⋅ones(𝑁𝑥−2))+diag(−𝑟⋅ones(𝑁𝑥−3),𝑘=1)+diag(−𝑟⋅ones 

                (𝑁𝑥−3),𝑘=−1) 

     6.2.2 𝐵=diag((1−2⋅𝑟)⋅ones(𝑁𝑥−2))+diag(𝑟⋅ones(𝑁𝑥−3),𝑘=1)+diag(𝑟⋅ones(𝑁𝑥−3),𝑘=−1) 

7. Time Iteration: 

7.1 For each time step 𝑛 from 0 to 𝑁𝑡−2: 

7.1.1 Calculate 𝑏 from 𝐵⋅𝑢[𝑛,1:−1]. 

7.1.2 Solve the linear equation 𝐴⋅𝑢[𝑛+1,1:−1]=𝑏A⋅u[n+1,1:−1]=b to get the value of 𝑢u at 

the next time step. 

8. Plot Results: 

8.1 Plot the simulation results at certain time steps to see the heat propagation. 

8.2 Add labels, titles, and grids to the plots for easier interpretation. 

9. Finish 

RESULTS AND DISCUSSION 

Based on the experimental results, the following results are obtained. The space interval (𝑑𝑥) 

used is 0.01 and the time interval (𝑑𝑡) is 0,0001. Where the graph results produced by the explicit 

method are not perfect (can be seen in Figure 2). This is because in the explicit scheme, each time 

step is calculated directly from the values in the previous time step. In the explicit scheme, the value 

of  𝜆 = 𝛼
𝜕2𝑡

𝜕𝑥2  must satisfy the Courant-Friedrichs-Lewy (CFL) stability condition for the solution to 

remain stable. When λ is greater than the stability constraint (generally ≤
1

2
), the solution may 

become unstable and produce oscillations or even divergence in the results. In this experiment, the 

value of 𝜆 = 1 exceeds the stability boundary, causing numerical instability and imperfect graphs. 

Unlike the implicit method, which uses a time approximation that includes the values at the 

previous time step and the next time step, and therefore is not subject to strict stability constraints 

like the explicit scheme. The Crank-Nicolson method, which is an implicit method, has the 

advantage of better numerical stability. It is not subject to strict stability constraints and remains 
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stable for all time intervals dt and space dx. This means that even when using a value of 𝑑𝑡 = 0.0001, 

Crank-Nicolson scheme produces stable and accurate solutions without experiencing the instability 

problems faced by explicit schemes. The following graphs show the results of the heat propagation 

of the metal rod by the Explicit and Implicit methods. 

 
Figure 2. Heat propagation graph of metal rod by Explicit method with 𝑑𝑡 = 0. 0001 

  

 
Figure 3. Heat propagation graph of metal rod by implicit method with 𝑑𝑡 = 0.0001 

 

Then we tried changing the time interval (dt) by 0.00001 to see if the large value of the time 

interval affects the numerical calculation process of this Explicit method. The results are as follows. 

 

 
Figure 4 . Heat propagation graph of metal rod by Explicit method with 𝑑𝑡 = 0.00001 
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Figure 5. Heat propagation graph of metal rod by Implicit method with 𝑑𝑡 = 0.00001 

 

From the results of this experiment, it can be seen that by reducing the value of 𝑑𝑡 to 0.00001, 

the graph of the calculation results by the explicit method becomes more stable and close to the 

results obtained by the implicit method. This shows that the explicit method is very sensitive to the 

time interval used. With a smaller time interval, the explicit method can achieve the necessary 

stability to produce a more accurate solution. However, this also means that to achieve the same 

stability and accuracy as the implicit method, the explicit method requires much smaller time steps, 

which can greatly increase the computation time.. 

Implicit methods, particularly the Crank-Nicolson scheme, exhibit superior stability and 

consistent accuracy without requiring drastic adjustments to the time interval. This makes them 

more efficient and reliable to use in heat propagation simulations with given parameters. Overall, 

although explicit methods can be used with proper stability conditions, implicit schemes such as 

Crank-Nicolson offer better stability and efficiency advantages, making them more suitable for 

simulations with larger time steps. 

The thermal diffusion process describes how heat spreads through a metal rod from a heated 

region to a cooler region. Heat tends to flow from high temperatures to low temperatures, causing 

changes in temperature distribution over time. Insulators at both ends of the rod keep the 

temperature at zero degrees, which means there is no heat flow in or out of the ends of the rod. The 

initial temperature 𝑇(𝑥, 0) = 𝑥(𝑙 −  𝑥) shows the maximum temperature distribution at the center of 

the rod, which then spreads across the rod over time. 

Therefore, the choice of method largely depends on the specific needs of the simulation. If 

stability and accuracy in long-term simulations are top priorities, implicit methods are a better 

choice. However, if short-term simulations or with the need for fast computation per time step are 

required, the explicit method can be considered, with the caveat that the time step must be small 

enough to maintain stability. Both methods have their own applications and advantages, and often 

in practice, both are used according to the context and requirements of the simulation. 

Here is a visualization of the graph in three dimensions. 
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Figure 5. Heat propagation graph of metal rod by Explicit method with 𝑑𝑡 = 0.00001 3D 

 

 

Figure 6. Heat propagation graph of metal rod by Implicit method with 𝑑𝑡 = 0.00001 3D 

 

At 𝑡 = 0, the initial temperature distribution is parabolic with the highest temperature at the 

center of the rod and zero temperature at both ends of the rod. Then at time 𝑡 >  0, Heat starts to 

propagate from the region with higher temperature (center of the rod) to the region with lower 

temperature (ends of the rod). This is a natural characteristic of the heat diffusion process, where 

heat tends to move from hot regions to cold regions. The temperature at the center of the rod starts 

to decrease as the heat spreads outward, while the temperature at the ends of the rod starts to 

increase as it receives heat from the center of the rod. Finally, at 𝑡 =  2, the temperature distribution 

along the stem becomes more even. The temperature at the center of the rod continues to decrease 

as heat continues to propagate towards the ends of the rod, while the temperature at the ends of the 

rod increases. At the end of the simulation (𝑡 =  2), the temperature along the rod has approached 

a more balanced state compared to the initial conditions. There is no longer a sharp temperature 

gradient along the rod, indicating that the system is approaching thermal equilibrium. 

• The resulting graph shows how the temperature distribution changes over time. On each 

curve, we can see how the temperature at each point along the bar changes. 

• The curve at time 𝑡 = 0 shows a parabolic initial temperature distribution. 
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• The curve at time 𝑡 = 2 shows a more even temperature distribution, with the temperature 

decreasing at the center of the rod and increasing at the ends of the rod. 

This process illustrates the nature of heat diffusion, where heat tends to spread from hot to cold 

regions, causing a more even temperature distribution over time. This simulation uses the numerical 

method of Crank-Nicolson scheme which provides a stable and accurate solution to the heat 

equation. This process describes the nature of heat diffusion, where heat tends to spread from hot 

regions to cold regions, causing a more even temperature distribution over time. The simulation 

utilizes the numerical method of Crank-Nicolson scheme which provides a stable and accurate 

solution to the heat equation. 

 
 

Figure 7. Illustration of heat propagation 

Modified 

A modification is made by placing a candle just below the position 𝑥 = 𝑙, then the candle is lit 

for some time, after which the candle is turned off. In this case, the temperature change at one end 

of the metal rod is maintained at zero degrees, the equation given is the same as Equation (5), but 

the initial value 𝑇(𝑥, 0)  =  𝑥, 0, 0 <  𝑥 <  𝑙. With the boundary condition 
𝜕𝑇(0,𝑡)

𝜕𝑥
 =  𝑇(𝑙, 𝑡)  =  0 for 

any 𝑡 >  0 and the length of the metal rod as 𝑙 = 1 unit length, the domain 0 ≤  𝑥 ≤  1 is obtained. 

In this case, heat propagation for 1 unit time will be observed, so the domain 0 ≤  𝑡 ≤  1 is obtained. 

In the explicit method, the graph (see Figure 7) shows how the initial temperature, which varies 

linearly from 0 at 𝑥 = 0 to 1 at 𝑥 = 1, spreads along the rod over time. The temperature distribution 

gradually becomes more even, but this method can show larger temperature fluctuations and may 

experience instability if the parameters are not chosen carefully. In contrast, the Crank-Nicolson 

method gives a more stable and smooth temperature distribution. The graphs from this method 

show that the heat propagation is more consistent and less fluctuating, resulting in more realistic 

and accurate simulations for longer periods of time. Both graphs illustrate how the temperature is 

evenly distributed along the rod over time after the candle is placed and then extinguished, 

providing insight into the effectiveness and different characteristics of the two numerical methods. 
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Figure 8. Heat propagation graph of modified metal rod by Explicit method 

 

 

Figure 9. Heat propagation graph of modified metal rod by Implicit method 

CONCLUSION 

Based on the results of the research and analysis that has been carried out, several important 

points can be concluded as follows : 

Diffusion Process in the Rod 

The heat diffusion process modeled through this simulation clearly illustrates how heat 

propagates from hot to cold regions, causing the temperature along the rod to become more even 

over time. The use of the Crank-Nicolson scheme in this simulation provides a stable and accurate 

solution to the heat equation, ensuring that temperature changes can be followed precisely at each 

time step. This confirms that thermal diffusion is a natural process that seeks to achieve temperature 

equilibrium in homogeneous systems. 
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Explicit and Implicit Methods: 

The Explicit Method is very sensitive to the size of the time interval used. To achieve good 

stability and accuracy, these methods require very small time steps, which results in longer 

computation times, especially for long-term simulations. 

The Implicit (Crank-Nicolson) method shows better numerical stability and consistency without 

requiring drastic adjustment of the time interval. This method remains stable even with larger time 

intervals, making it more efficient and reliable for heat propagation simulations. 

Stability and Accuracy: 

Explicit methods are prone to instability and temperature fluctuations if the parameters are not 

chosen carefully, especially when the value of λ\lambdaλ goes beyond the stability limit. 

The Crank-Nicolson method provides a more stable and smooth temperature distribution, 

resulting in more realistic and accurate simulations, even for longer periods of time. 

Computational Efficiency: 

Although the explicit method can be used with proper stability conditions, it requires much 

smaller time steps to achieve the same stability as the implicit method, thus improving the 

computation time significantly. 

The Crank-Nicolson method is more efficient and does not require small time intervals, making 

it more suitable for simulations with larger time steps and long-term applications.. 

Experiment Modification: 

The modification of placing the candle at a specific position shows how the initial temperature 

distribution spreads along the rod over time. The Crank-Nicolson method still gives more stable and 

consistent results than the explicit method under these conditions. 

 

Overall, the choice of method is highly dependent on the specific needs of the simulation. If the 

main priorities are stability and accuracy in long-term simulations, implicit methods such as Crank-

Nicolson are a better choice. However, for short-term simulations or with the need for fast 

computation per time step, explicit methods can be considered with the caveat that the time step 

must be small enough to maintain stability. Both methods have their own applications and 

advantages, and are often used in practice according to the simulation context and requirements. 

Based on the results of research and data analysis on classroom action research (CAR) which has 

been carried out for 3 cycles, it is seen that there is an increase in learning outcomes, teacher and 

student activities, the ability of teachers to manage learning, and good student responses to the 

application of the PBL model. In the use of this learning method, instructors can make several 

modifications to elements such as rod length, heat conduction time, and various adjustable variables, 

so that when applied, students can integrate simulations with the theories and formulas they have 
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learned so far. However, in every learning experience, there are always its own challenges. In this 

case, the challenge of this learning is the programming algorithms that may encounter errors in 

certain parts, requiring more time to rebuild the program that will be used. 
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