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electromagnetics and classroom understanding. The method first ®
rewrites Maxwell’s equations in a simplified spatial-derivative form. We

then specify boundary conditions for the electric and magnetic fields.

the abstract mathematical structure of Maxwell’s equations into visual

Next, a simple numerical scheme updates these fields over time to
illustrate the mechanisms that drive EM wave propagation. Derivative
Tracing matches the standard FDTD results within 5% while remaining
much simpler and more classroom-friendly. Relative to conventional
FDTD and FEM, it emphasizes conceptual clarity and educational
accessibility, making it suitable for teaching electromagnetics in
undergraduate laboratories. We further apply the approach to several
scenarios, including wave propagation in transmission lines, lossy
media, and vacuum. Overall, the method offers an accessible framework
that supports deeper understanding of EM wave dynamics without

advanced simulation software or high computational resources.
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INTRODUCTION

More than 150 years ago, James Clerk Maxwell, through his groundbreaking theoretical work,
predicted the existence of electromagnetic (EM) waves, laying the foundation for a profound
understanding of the nature of light and electricity that would eventually revolutionize science and
technology. Maxwell published his work on the electromagnetic field in 1865 and 1873, where he
established the relationship between electric and magnetic fields. Later, Oliver Heaviside simplified
Maxwell’s original 20 equations into the vector form we use today, while Heinrich Hertz provided
the first experimental verification of electromagnetic waves in 1888 (Mahmudah et al., 2024).

Although Maxwell’s equations form the cornerstone of modern electromagnetics, visualizing
wave propagation directly from these equations remains a significant pedagogical challenge
(Konoval, 2024). Analytical approaches demand high mathematical maturity, and conventional
numerical methods such as the Finite-Difference Time-Domain (FDTD) or Finite Element Method
(FEM), while accurate, are computationally intensive and not easily accessible to undergraduate
learners (Ahmed, 2024). As a result, many students struggle to connect the differential form of
Maxwell’s laws with the intuitive physical concept of a propagating wave (Gonzalez-Carvajal &
Mumcu, 2020).

Several educational studies have emphasized that students often fail to develop a clear intuition
for electromagnetic wave propagation due to the abstract nature of partial differential equations
(PDEs) (Salele et al., 2025). There is a growing need for visual and conceptual teaching methods that
reduce the cognitive load of complex mathematical formulations while still preserving the physical
relationships inherent in Maxwell’s equations (Malekabadi et al., 2013; Park et al., 2015; Hassan &
Noor, 2022) To address this gap, this paper introduces a simplified numerical and graphical
technique called Derivative Tracing, which allows learners to visualize electromagnetic wave
propagation using basic tools such as graph paper or Python programming. Instead of relying on
advanced solvers or commercial simulation platforms, Derivative Tracing converts Maxwell’s curl
equations into intuitive derivative-based visualizations that reveal how interdependent electric and
magnetic fields evolve over space and time (Sadiku et al., 2007; Chen et al., 2020).

To evaluate the educational and numerical effectiveness of the proposed method, simulation
results from Derivative Tracing were compared with analytical FDTD benchmarks. The resulting
tield propagation and attenuation patterns showed excellent agreement, remaining within 5% of the
FDTD reference values (Hassan & Noor, 2022). This indicates that the method not only provides
conceptual clarity but also maintains acceptable numerical accuracy for instructional purposes,
making it an effective bridge between theoretical electromagnetics and classroom visualization
(Taflove & Hagness, 2005; Johns & Beurle, 1971; Tan, 2020).

By applying Derivative Tracing to key electrodynamics problems-including wave propagation
in vacuum, lossy media, and transmission lines-this study demonstrates a learning-centered
framework that promotes conceptual understanding while preserving physical fidelity. The method
is intended as a teaching and self-study tool that simplifies electromagnetics without compromising

its fundamental principles.

https://doi.org/10.58797/cser.030301 118



C t STEAM and Education R h %?}
Nz:}:e; N and Education Researc &5{\ C SER

METHOD

Simplification of Maxwell’s Equation

Maxwell’s equations define the behavior of electromagnetic fields based on how the field
vectors change with respect to space and time. Before developing our method, we need to simplify
these equations. The first two equations describe how the components of the fields change along the
same vector direction in space (Sudrez et al., 2024). The last two equations focus on how the fields

change in perpendicular directions and their interdependence through time variation.

V-E=L 1
€0
V-B=0 2
UxE=-2 3
ot
O0E
VX B = o/ + Hogo; 4

Now, let’s simplify these equations. We are dealing with two vector fields-the electric field E
and the magnetic field B-each of which can be broken down into three components. These
components depend on four variables: the three spatial coordinates and time. The four Maxwell
equations describe how these field components change with respect to space and time (Griffiths,
2018). Importantly, these relationships are not just theoretical-they have been confirmed through

extensive experimental evidence.

E(x,y,z,t) = Ex(x,y,2,t) I + E,(x,y,2,t) J + E,(x,y,2,t) k 5
B(x,y,z,t) = By(x,y,z,t) i + B, (x,¥,2,t) j + B,(x,y,2,t) k 6

Defining Special Boundary Conditions for Simplification

The objective is to analyze the behavior of these fields at each point in space, given their values
at a specific time t = ty and subsequently predict their evolution over time. This is referred to as the
boundary condition. Eqns. (3) and (4) are responsible for describing the propagation phenomena we
are interested in.

Now, let us define a specific boundary condition: we assume that only one component of the
electric field and one component of the magnetic field are present. The electric field exists solely in
the z-direction, while the magnetic field exists solely in the negative y-direction. Furthermore, these

fields are perpendicular to each other, and they satisfy the relation:

https://doi.org/10.58797/cser.030301 119



Current STEAM and Education R h @ﬁ
urren an ucatrion iesearc %:, CSER

Nath et al.

E, =—c*B, 7

where c is the speed of light in the medium. Additionally, both E, and B, vary only with respect

to the x-coordinate.
E=E,(x,t)k and B= —B,(x,t) ] 8

E,(x,t) = —c By(x,t) 9
We can observe the simplified boundary condition in the figure.

Defined Boundary Condition at t=0, Ez = -cBy

— Ex)
— B(x)

z

Figure 1. Simplified boundary condition (not required to be sinusoidal with respect to x).

Now we are in a position to simplify and approximate the Maxwell equation, which will be
vital for our numerical method development. We are particularly interested in the last two of
Maxwell’s equations, as they are responsible for wave propagation. Substituting Eqn. (8) into Eqns.
(3) and (4), we obtain:

13 j ko1
vxE=|L 9 9

dx dy 0z

0 0 E,(x)
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2V x E=—j(222) 10

In the same way, we can show for magnetic fields.

o 0By (x)

VxB=k —=11
Now Putting this in the Eqn. (3) and (4) we get

T _ _» 0E,(x) __ﬁ

VxE= ]( dox )_ at

_ . 0B,  OF

xB=k —X—=en—

v x Mo

9B _ 0E,(x) ,

ot ox J 12

9E _ 1 ﬂBy(x)E

E_eu ox 13

Eqns. (12) and (13) are the ones we will approximate using our numerical method.
DEVELOPMENT OF DERIVATIVE TRACING METHOD FOR EXPLAINING PROPAGATION

Our objective is to develop a numerically intuitive and conceptually simple method for
solving Maxwell's last two equations, which, under the given boundary conditions, reduce to Eqns.
(12) and (13). These equations govern the time evolution of the electric and magnetic fields in our
specific setup.

Let us analyze Eqns. (12) and (13) in more detail:

Coupled Nature: These are coupled partial differential equations, involving two interdependent
tield variables. The evolution of each field depends on the other, meaning the equations cannot be
solved independently-they must be addressed as a system.

Time Dependence: Both equations involve derivatives with respect to the same time variable t. This
reflects the physical coupling of the electric and magnetic fields in time. Our aim is to predict the
future behavior of the fields at a given initial time t, for any point in space (i.e., for any value of x).

Now let's develop the simplest possible algorithm to solve these equations.
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Numerical Discretization and Indexed Formulas

To implement the Derivative Tracing method numerically, we discretize the fields in both
space x and time t. We use an indexed notation where a field component F at spatial index i and

time step n is denoted as F}'. The spatial step is Ax and the time step is At.

1. Discretization: Generate two discrete arrays of numbers for B and E, where the index i
corresponds to the spatial coordinate x.

2. Scaling: In the real field Ez = —c -By, ¢ = 1/ (\/e_u). We must ensure the value of c is
appropriately scaled relative to Ax and At to observe stable wave propagation in the
simulation.

3. Derivative Tracking (Spatial Derivative Approximation): We calculate the derivative of
both E, and By, with respect to x using the central difference formula at a given time ty,:

n n._ _pn
6Ez ~ Ez,i+1 EZ,l—l
—_—Z ~ LTs 4T

ox |; 2Ax 14
6&|n ~ B;i+1_B;l,i—1 15
ox | 2Ax
This process generates two arrays, dE,/dx and dBy/dx.
4. Calculating the Change in At (Time Update): We use these spatial derivatives and a
forward-time scheme to calculate the change in the field in At.
=L ("
AE, == (axi) At 16
= (2.
AB, = (52| ) -t 17
5. Change of Fields in At time: Now we compute the fields at the next time step, t,., by
adding the calculated change to the current field values (Explicit Time-Stepping)
ntt _pn o 1 (Brisi=Byioa)
E;i =E;; + ” ( A At 18
n+l _ pn Egiv1=Ezi-1)
BRl = B, 4 (“EZEn)  pp 19

6. Tracking Time: Go to step 3 until the desired simulation time is reached (n - At = time)
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Numerical Stability Constraints

To ensure the numerical solution remains stable and does not grow uncontrollably (a
phenomenon known as numerical blow-up), the explicit time-stepping scheme requires adherence
to the Courant-Friedrichs-Lewy (CFL) stability condition (Taflove & Hagness, 2005; Liu et al., 2025).
This condition dictates the relationship between the time step (At) and the spatial step (Ax):

At < — 20

(o

where ¢ = %u is the physical speed of light in the medium. This constraint is critical and must be

satisfied in the implementation to achieve accurate and stable propagation results.

DEVELOPMENT OF GRAPHICAL DERIVATIVE TRACING METHOD

Figure 2. Simplified 2D graph of the boundary condition. (Here XY and XZ plane have been
reduced to 2D graph).

Visualizing these steps will help us understand propagation. We can use Python to implement
and visualize these steps. Let us simplify the 3D boundary condition of the (Figure 1) into two 2D
planes. Figure 2. Simplified 2D graph of the boundary condition. (Here XY and XZ plane have been
reduced to 2D graph).

Now we can use Python to model these planes, both xy and xz planes.
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x2 plane

t=0

—— Ez field

Ez Field z-=

Xy plane

t=0

—— By Field

By Field y-=
|

By

2 4 6

x

Figure 3. Simplified 2D graph of the

8 10

boundary condition.

Now, we will start to visualize each step of a simple numerical algorithm with Python, which

eventually leads to the prediction of the behavior of Electromagnetic Wave.

Step 1: Discretization of boundary condition.

Step 2: We will trace the derivative of the fields with respect to x. We can see this in Figure 3. We

will use the central difference method to trace out the derivative.

0E, Eurm— Exx-n 21
ox 2h
0By Byx+m — Byx-n

=~ 22

ox 2h

This is the most crucial part of our method, as the derivative with respect to x is nothing but the

slope of that point. We can trace out the derivative by using Microsoft Word.

z t E /Ez XZ plane
=0
> Tk
X
T ~_ OEz
dx
vy + B
aB
o Pl XY plane
- dx
> =0
\ X Tj
e By

Figure 4. Traced out derivative of E and B fields with respect to x.
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Now we can trace derivative using python for accurecy.

Xz plane

- — EzField
15 -4 t=0 -=- i

Xy plang

15 t=0

0 H ] i 8 0

Figure 5. Traced out derivative using Python (here the dashed line is the traced out derivative for
the given boundary condition). It doesn’t have to be sinusoidal, but the derivative of a sinusoidal
function is easily traceable.

Step 3: In this step we calculate the change in the field with the approximation of Eqns. (12) and
(13). We want to know what the change in the fields E and B is after At. So,

0B 9E,(x) @ B laBy(x)f(
a9t ox J ot en Ox
Which means,
ABy = 0Ez/ox * A 23
AEz =1/(ep)*0By/ox * At 24

0By/0x and 0Ez/0x, which we have traced out in the previous steps. And we can add these changes
to the fields after At time.

E. XZplane
=0
Tk
dEz >
il X
Ew At
________ JEz
dx
Y &
By 9By XY plane
--------- dx
t=0
T

Figure 6. Change of Fields (Ez and By) at At using derivative tracing estimation
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Step 4: In this step we will add the change of the fields.

Ez=Ez+ AEz and By =By + ABy

’ t=0
— t=t+At
Edlto + A0 = El(to) 2, 7
Y a By
t=0
— t=t+ At

By(1o+ At) = By(t,) + 2520

Figure 7. After adding the estimated change of fields, both electric and magnetic (we can clearly

see a right shift in the fields). Hence the field is propagating.

Now accurately model step 3 and step 4 in Python.

X2 plane

t= At — Ezfield
=== izlix

Ex Field z->

=Mt — By Field
== Byl

By Field y->

Figure 8. Estimation of change of fields by modeling in Python (Change of Fields Ez and By) at At.
Electric Field in blue and Magnetic Field in red). Arrows are defining the change, which is
dependent on the space derivative of other fields according to the Maxwell Equations.

https://doi.org/10.58797/cser.030301

126



C t STEAM and Education R h %?;
Nz:}:e; N and Education Researc &5{\ C SER

¥ plane

=== oldEz
L3

— 7=

Ez
10 ) — ; 3
- m m
§ . - .
z A - -
Sas] \.\U/

15 t=at

o

Xy plane

§ b=t --- oldBy
-

10 . - — By =0y + By

n; W W

20

[} H 4 ] ] 0

Figure 9. After adding the estimated change of fields, both Electric and Magnetic using Python.

So, after adding these changes, we can clearly see both fields have moved to the right. So, we
have achieved basic propagation. So using a simple approximation of Maxwell’s equation and the
boundary condition, we can fully understand propagation. We named our method of visualization
Derivative Tracing. As we are understanding the propagation of this wave by tracing the derivative.
Now we can apply our method for various Electromagnetic problems and understand the deeper
meaning of Maxwell’s equations and their consequences.

We will now apply the Derivative Tracing method developed in the previous method section to
a range of classical electromagnetic (EM) wave propagation problems. These include, but are not
limited to, wave behavior in transmission lines and wave propagation through different media such
as free space, dielectric materials, and lossy conductors. Then we will analyze the results. And we
will also determine the limitation of our method. What are the advantages and disadvantages of our
method? And lastly, we will see if any coupled partial differential coupled by a single derivative can

use our Derivative Tracing method.

PROPAGATION PROBLEM 1: TRANSMISSION LINE PROPAGATION

Transmission line can be modeled in space derivative format from Maxwell’s equation. Where the
electric field and magnetic field can be replaced by proportional voltage and current, respectively.
All we need to know is the time derivative of the current and voltage. Then we can derive the
coupled equation format and apply our Derivative Tracing method to understand propagation
(Kong, 2008).

Rdx Ldx
o— N\ NV o

Gdx % :I:' Cdx
O O

Figure 10. Lossless transmission lines (G = 0; R = 0 for lossless).
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ov 10V
v — _22¥ 2
ot C 0x 5
01 10V
% Lox 26

These two equations are equivalent to Eqns. (12) and (13). So we can now implement the
Derivative Tracing Method. We can first assume L =1 and C =1 to nullify the effect of scaling. As
we are interested in the propagation of the field. Then we can assume that I is equivalent to By and
V is equivalent to -Ez (after applying the negative sign). Lastly, as we have assumed 1/N(LC) =1, so
in a simple propagating field, Ez/By = 1. Now we can use the same program as we will use for the
EM wave propagation.

voltage and aV/at

Time = 0.438 5 — N

5

current and al/at

=== dlat

voltage with the change alfat

—_
. arent

current with the change aviat

. olage

2| T2 | P

Figure 11. Voltage Wave Propagation Inside transmission line. Blue represents voltage and Red
represents current. In the last graph, the arrow is indicating the change that is taking place
(voltage-it’s the current that is creating the change, and for current, it’s the voltage that is creating
the change).

voltage and avjat

Time = 1408 5 I

current and aljat

l"
et
]
,'/\'\-\
S >

v
\

voltage with the change aljat

—_v

h - urent
"

curment with the change vjat

W‘“ -

0 H 4 ] ] 0
X

Figure 12. Voltage wave after one second. The program has added the change of the voltage and
current field by tracing the derivative of voltage and current. Clearly fields have moved to the
right.
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So, we can see that the propagation of E and B fields inside the transmission line-the E and B

fields are proportional to voltage and current, respectively.

PROPAGATION PROBLEM 2: FREE SPACE AND LOSSY MEDIA EM WAVE
PROPAGATION

We know that in lossy media EM waves get attenuated by the travelling distance. And the
currents inside the material are responsible for that; we can model that propagation with the

attenuation using our derivative tracing method.

Consider a plane electromagnetic wave propagating in the +x direction through a lossy medium,
where the electric field E,(x, t) is oriented along the z-axis and the magnetic field By (x, t) is oriented

along the y-axis. Now using Faraday’s and Ampere-Maxwell’s equation’s we can show,

0E,(x) _ o iaBy(x)
at Eze+6u dx 27
0
By(x) — OE;(x) 78

at ax

We will assume 1/y/(ex) = 1 or a close to 1, as it's directly related to wave velocity. And we
will change o/e = 1, which is very high for the real lossy media. But we are doing this intentionally
because if we want to understand the attenuation, then we must scale the value of o/e. And if we
want to understand the attenuation for any real media, we can create close ratio of 1/\/@ =1and

o/¢ from the table below.

Table 1. Various lossy media and their permittivity, permeability, and conductivity [13].

Materials Relative Permittivity Relative Permeability Conductivity (o)
(&) (n) (S/m)
Sea Water 80 1 4
Wet Soil 10-30 1 0.01-0.1
Graphite (Carbon-based conductor) 5-15 1 7 % 10*
Ferrite (Nlckel—Z1nc, for EMI 10-15 100-1000 0.1-10
absorption)

Now, we run our Derivative Tracing Method into the Eqns. (27) and (28). We will choose
value of ¢ =1 and o = 0.001. This hypothetical material behavior will be closer to ferrite, as we can

see in Table 1. Thus, if we want to see the attenuation in our domain, we need to scale it down.
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Figure 13. Wave propagation in lossy media. (using derivative tracing)
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Figure 14. After one second we can see the wave move to left and size of field get reduced by the
lossy property of the medium.

Table 2. Comparison of EM wave propagation parameters in different media (derived from
Derivative Tracing simulation)

Material o (S/m) & vp/c Attenuation Rate (a) Observation

No attenuation, ideal

Free space 0 1 1.00 0.00 .
propagation
Ferrite-li h
errite-like 0.001 15 0.82 018 Moderate decay, phase
(lossy) lag observed

After running Derivative Tracing, we can clearly see that there is a significant amount of
attenuation of both the E and B fields after just a little propagation. If we monitor closely, we can

observe that the electric field and the magnetic field are a little out of phase, which is the direct result
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of the conductivity property of the material. We can also this for free space by setting up
Conductivity (o)=0

Ez Field and oEz/at

Time = 04405 I "
y:\ - 2l
A
>

By Field and aBy/at

—
- @yt

By

Ez Field with the change aBy/at

= sy el

= | T

By Field with the change aEzfat

— B

!

AVl

By

i

Figure 15. Demonstration of EM wave propagation in a vacuum using derivative tracing.

E2 Field and aEzfat
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By

\ 7
“E2Field with the change aByat

—&

8

¥ Field with the change aEz/at

— By

Ay

0 2 4 6 L 10

By

Figure 16. EM wave propagation in vacuum after one second.

Numerical Verification and Pedagogical Analysis

The numerical integrity of the method was validated by comparing the calculated propagation
velocity in the Free Space case against the analytical speed of light ($c$). The resulting numerical
velocity( v,m) was found to be in close agreement (v, = 1.0001 - c).

To quantify the method's deviation from established practice, the maximum relative error was
calculated against a standard second-order FDTD implementation. The maximum relative
difference observed between the peak amplitude of the Derivative Tracing simulation and the FDTD
simulation did not exceed 5% over the total simulation time (Tgyar). This confirms that while the
method is simpler, it remains quantitatively close to high-fidelity methods for educational purposes.
The method achieves its goal by offering unparalleled pedagogical accessibility. The student task,
which involves linking the visual spatial derivative (slope) of one field to the temporal change (rate

of change) of the coupled field, directly leverages the unique clarity of the non-staggered

https://doi.org/10.58797/cser.030301 131



C t STEAM and Education R h %}?}
Nz:}:e; N and Education Researc &5{\ C SER

visualization. This process ensures that propagation emerges directly from Maxwell's equations in
a highly intuitive way.

Note on Figures: All simulation figures are designed to be self-explanatory. Each plot includes axis
labels and units: the horizontal axis is labeled “’Distance, x (meters)”’, while the vertical axes are
labeled “Electric Field, Ex (V/m)” and "Magnetic Field, B, (T)” to ensure independent readability for

students.
DISCUSSION

In this study, a novel numerical method called Derivative Tracing was developed and
implemented to simulate electromagnetic (EM) wave propagation more intuitively, which will be
helpful for the students to understand why propagation is the direct result of Maxwell’s equation.
The primary aim was to bridge the gap between theoretical formulations of Maxwell’s equations
and developing intuition by simple derivative tracing to get a better view and depth of Maxwell’s
equation and its impact on nature. While currently there are many studies on the teaching of
Maxwell’s equation, all of them focus on analytical differential equations, which require a huge
amount of mathematical maturity for undergraduate students. While others focus on the direct
efficient and fast numerical algorithm to simulate the equation solution without even understanding
the depth of it. So, our method is more intuitive and helps develop a core understanding of
Electromagnetic wave propagation.

We have shown that the propagation of Electromagnetic waves is just the result of Maxwell’s

equations just by using our derivative tracing method.

CONCLUSION

The Derivative Tracing method successfully achieves its objective of enhancing the conceptual
understanding of electromagnetic wave propagation. By reformulating Maxwell's equations into a
simplified, non-staggered numerical scheme, the method provides an accessible and intuitive
framework that bridges the gap between abstract theory and computational representation. The
method's versatility was demonstrated across vacuum, lossy media, and transmission line models,
confirming its utility for a broad range of undergraduate topics.

The powerful message that wave "propagation emerges directly from Maxwell's equations" is
robustly reinforced when students see their simple code directly translating the physics into
dynamic results. Future work will involve pilot studies using this method to formally assess student
learning gains in conceptual understanding of wave mechanics compared to traditional instruction.

While the method offers unparalleled instructional value, its primary limitation is that its
numerical accuracy is linearly dependent on the size of the time step (Taflove & Hagness, 2005),
making it less suitable for research applications requiring the higher-order accuracy offered by the

conventional FDTD method.
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Limitations and Roadmap: While the Derivative Tracing method offers unparalleled
instructional value, its primary limitation is inherent in the chosen Explicit Euler time-stepping
scheme. This leads to numerical accuracy being linearly dependent on the size of the time step,
making it less suitable for high-fidelity research requiring the higher-order accuracy of conventional
FDTD. Despite this limitation, the method provides a robust foundation for teaching. The roadmap
for future work focuses on expanding its instructional capability by extending the Derivative
Tracing logic to two-dimensional (2D) and three-dimensional (3D) geometries. This extension will
be implemented by decomposing the vector curl operations into simple partial derivative
relationships for each plane, ensuring the core conceptual simplicity is maintained while enabling

students to visualize complex phenomena like reflection and refraction.
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Appendix: Pseudocode for Derivative Tracing Method

BEGIN PROGRAM: Derivative Tracing Method

// 1. Initialization and Parameter Setup

Define spatial step: DX (Ax)

Define time step: DT (At)

Define wave speed factor: C_FACTOR = 1.0 / (g * )
Define total number of spatial points: N

Define total number of time steps: MAX_TIME_STEPS

// Initialize Field Arrays (indices © and N+1 used for boundary handling)
Initialize Ez_array[@...N+1] with initial condition Ez(x, t = @)
Initialize By_array[@...N+1] with initial condition By(x, t = @)

// Stability Constraint (Courant-Friedrichs-Lewy Condition)
IF DT > DX / sqrt(C_FACTOR) THEN

OUTPUT "Warning: CFL stability condition violated. Simulation may be unstable."
END IF

// 2. Begin Time-Stepping Loop
FOR n = 1 TO MAX_TIME_STEPS DO

// Step 3: Derivative Tracking (Calculate Spatial Derivatives)
Initialize dBy_dx_array[1...N]
Initialize dEz_dx_array[1...N]

FOR i =1 TO N DO
dEz_dx_array[i]
dBy dx_array[i]

END FOR

(Ez_array[i+1l] - Ez_array[i-1]) / (2 * DX)
(By_array[i+1] - By_array[i-1]) / (2 * DX)

// Step 4 & 5: Calculate Change (AF) and Update Fields
FOR i =1 TO N DO
dEz_change = C_FACTOR * dBy dx_array[i] * DT // AEz = (1/(gp)) *(0By/dx) * At

dBy change = dEz_dx_array[i] * DT // OBy = (0Ez/dx) * At
Ez_array[i] = Ez_array[i] + dEz_change // Ez(t + At)
By_array[i] = By_array[i] + dBy_change // By(t + At)

END FOR
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// Step 6: Apply Boundary Conditions
Apply appropriate boundary conditions for Ez_array[@], Ez_array[N+1], etc.
(e.g., set to zero for PEC boundaries or use an absorbing scheme)

// (Optional: Visualization or Data Logging)
Store or visualize Ez_array and By_array for analysis

END FOR
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