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Abstract 

In this study, we present a Derivative Tracing method to strengthen 

students’ conceptual understanding of electromagnetic (EM) wave 

propagation directly from Maxwell’s equations. We aim to develop a 

graphical and numerical approach that lets students explore EM wave 

behavior on graph paper or with basic programming tools. We translate 

the abstract mathematical structure of Maxwell’s equations into visual 

and computational representations, bridging theoretical 

electromagnetics and classroom understanding. The method first 

rewrites Maxwell’s equations in a simplified spatial-derivative form. We 

then specify boundary conditions for the electric and magnetic fields. 

Next, a simple numerical scheme updates these fields over time to 

illustrate the mechanisms that drive EM wave propagation. Derivative 

Tracing matches the standard FDTD results within 5% while remaining 

much simpler and more classroom-friendly. Relative to conventional 

FDTD and FEM, it emphasizes conceptual clarity and educational 

accessibility, making it suitable for teaching electromagnetics in 

undergraduate laboratories. We further apply the approach to several 

scenarios, including wave propagation in transmission lines, lossy 

media, and vacuum. Overall, the method offers an accessible framework 

that supports deeper understanding of EM wave dynamics without 

advanced simulation software or high computational resources. 
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INTRODUCTION 

More than 150 years ago, James Clerk Maxwell, through his groundbreaking theoretical work, 

predicted the existence of electromagnetic (EM) waves, laying the foundation for a profound 

understanding of the nature of light and electricity that would eventually revolutionize science and 

technology. Maxwell published his work on the electromagnetic field in 1865 and 1873, where he 

established the relationship between electric and magnetic fields. Later, Oliver Heaviside simplified 

Maxwell’s original 20 equations into the vector form we use today, while Heinrich Hertz provided 

the first experimental verification of electromagnetic waves in 1888 (Mahmudah et al., 2024). 

Although Maxwell’s equations form the cornerstone of modern electromagnetics, visualizing 

wave propagation directly from these equations remains a significant pedagogical challenge 

(Konoval, 2024). Analytical approaches demand high mathematical maturity, and conventional 

numerical methods such as the Finite-Difference Time-Domain (FDTD) or Finite Element Method 

(FEM), while accurate, are computationally intensive and not easily accessible to undergraduate 

learners (Ahmed, 2024). As a result, many students struggle to connect the differential form of 

Maxwell’s laws with the intuitive physical concept of a propagating wave (González-Carvajal & 

Mumcu, 2020). 

Several educational studies have emphasized that students often fail to develop a clear intuition 

for electromagnetic wave propagation due to the abstract nature of partial differential equations 

(PDEs) (Salele et al., 2025). There is a growing need for visual and conceptual teaching methods that 

reduce the cognitive load of complex mathematical formulations while still preserving the physical 

relationships inherent in Maxwell’s equations (Malekabadi et al., 2013; Park et al., 2015;  Hassan & 

Noor, 2022) To address this gap, this paper introduces a simplified numerical and graphical 

technique called Derivative Tracing, which allows learners to visualize electromagnetic wave 

propagation using basic tools such as graph paper or Python programming. Instead of relying on 

advanced solvers or commercial simulation platforms, Derivative Tracing converts Maxwell’s curl 

equations into intuitive derivative-based visualizations that reveal how interdependent electric and 

magnetic fields evolve over space and time (Sadiku et al., 2007; Chen et al., 2020). 

To evaluate the educational and numerical effectiveness of the proposed method, simulation 

results from Derivative Tracing were compared with analytical FDTD benchmarks. The resulting 

field propagation and attenuation patterns showed excellent agreement, remaining within 5% of the 

FDTD reference values (Hassan & Noor, 2022). This indicates that the method not only provides 

conceptual clarity but also maintains acceptable numerical accuracy for instructional purposes, 

making it an effective bridge between theoretical electromagnetics and classroom visualization 

(Taflove & Hagness, 2005;  Johns & Beurle, 1971; Tan, 2020).  

By applying Derivative Tracing to key electrodynamics problems-including wave propagation 

in vacuum, lossy media, and transmission lines-this study demonstrates a learning-centered 

framework that promotes conceptual understanding while preserving physical fidelity. The method 

is intended as a teaching and self-study tool that simplifies electromagnetics without compromising 

its fundamental principles. 
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METHOD 

Simplification of Maxwell’s Equation 

Maxwell’s equations define the behavior of electromagnetic fields based on how the field 

vectors change with respect to space and time. Before developing our method, we need to simplify 

these equations. The first two equations describe how the components of the fields change along the 

same vector direction in space (Suárez et al., 2024). The last two equations focus on how the fields 

change in perpendicular directions and their interdependence through time variation. 

                                                                                                ∇ ⋅ 𝐸 =
ρ

ε0
         1 

                                                                                                            𝛁 ⋅ 𝑩 = 𝟎            2 

                                                                                                         ∇ × 𝐸 = −
∂𝐵

∂𝑡
   3 

   

                                                                                                   ∇ × 𝐵 = μ0𝐽 + μ0ε0
∂𝐸

∂𝑡
 4   

   Now, let’s simplify these equations. We are dealing with two vector fields-the electric field E 

and the magnetic field  B-each of which can be broken down into three components. These 

components depend on four variables: the three spatial coordinates and time. The four Maxwell 

equations describe how these field components change with respect to space and time (Griffiths, 

2018). Importantly, these relationships are not just theoretical-they have been confirmed through 

extensive experimental evidence. 

                                         𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸𝑥(𝑥, 𝑦, 𝑧, 𝑡) 𝑖̂ + 𝐸𝑦(𝑥, 𝑦, 𝑧, 𝑡) 𝑗̂ + 𝐸𝑧(𝑥, 𝑦, 𝑧, 𝑡) 𝑘̂        5 

 

                                        𝐵(𝑥, 𝑦, 𝑧, 𝑡) = 𝐵𝑥(𝑥, 𝑦, 𝑧, 𝑡) 𝑖̂ + 𝐵𝑦(𝑥, 𝑦, 𝑧, 𝑡) 𝑗̂ + 𝐵𝑧(𝑥, 𝑦, 𝑧, 𝑡) 𝑘̂ 6 

 

Defining Special Boundary Conditions for Simplification 

   The objective is to analyze the behavior of these fields at each point in space, given their values 

at a specific time 𝑡 = 𝑡0 and subsequently predict their evolution over time. This is referred to as the 

boundary condition. Eqns. (3) and (4) are responsible for describing the propagation phenomena we 

are interested in. 

Now, let us define a specific boundary condition: we assume that only one component of the 

electric field and one component of the magnetic field are present. The electric field exists solely in 

the z-direction, while the magnetic field exists solely in the negative y-direction. Furthermore, these 

fields are perpendicular to each other, and they satisfy the relation: 
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                                                                                    𝐸𝑧 = −𝑐 ∗ 𝐵𝑦     7 

where c is the speed of light in the medium. Additionally, both Ez and By vary only with respect 

to the 𝑥-coordinate. 

                                                           𝐸 = 𝐸𝑧(𝑥, 𝑡) 𝑘̂      and     𝐵 = −𝐵𝑦(𝑥, 𝑡) 𝑗 ̂        8 

                                                                       

                                                                        𝐸𝑧(𝑥, 𝑡) = −𝑐 𝐵𝑦(𝑥, 𝑡)             9                

 

We can observe the simplified boundary condition in the figure.  

   

Figure 1. Simplified boundary condition (not required to be sinusoidal with respect to x). 

   

   Now we are in a position to simplify and approximate the Maxwell equation, which will be 

vital for our numerical method development. We are particularly interested in the last two of 

Maxwell’s equations, as they are responsible for wave propagation. Substituting Eqn. (8) into Eqns. 

(3) and (4), we obtain: 

 

 

∇ × E⃗⃗ = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0 0 𝐸𝑧(𝑥)

||   

 

= 𝑖̂ (
𝜕𝐸𝑧(𝑥)

𝜕𝑦
) − 𝑗̂ (

𝜕𝐸𝑧(𝑥)

𝜕𝑥
) + 𝑘̂(0) 
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                                                                     ∴ ∇  ×  E⃗⃗ = −𝑗̂ (
𝜕𝐸𝑧(𝑥)

𝜕𝑥
)       10

    

In the same way, we can show for magnetic fields. 

                       

                                                                  ∇ × B⃗⃗ = k̂ ⋅
∂By(x)

∂x
 11                                                                            

Now Putting this in the Eqn. (3) and (4) we get 

∇ × E⃗⃗ = −𝑗̂ (
𝜕𝐸𝑧(𝑥)

𝜕𝑥
) = −

𝜕 𝐵⃗ 

𝜕 𝑡
  

∇ × B⃗⃗ = k̂ ⋅
∂By(x)

∂x
= ϵμ

∂E⃗⃗ 

∂t
 

                                                                                        
𝜕B⃗⃗ 

𝜕𝑡
 =  

𝜕𝐸𝑧(𝑥)

𝜕𝑥
 𝑗̂                      12

   

                                                                              
∂E⃗⃗ 

∂𝑡
=

1

ϵμ

∂𝐵𝑦(𝑥)

∂𝑥
k̂    13 

 

Eqns. (12) and (13) are the ones we will approximate using our numerical method. 

DEVELOPMENT OF DERIVATIVE TRACING METHOD FOR EXPLAINING PROPAGATION 

   Our objective is to develop a numerically intuitive and conceptually simple method for 

solving Maxwell's last two equations, which, under the given boundary conditions, reduce to Eqns. 

(12) and (13). These equations govern the time evolution of the electric and magnetic fields in our 

specific setup. 

 Let us analyze Eqns. (12) and (13) in more detail: 

Coupled Nature: These are coupled partial differential equations, involving two interdependent 

field variables. The evolution of each field depends on the other, meaning the equations cannot be 

solved independently-they must be addressed as a system. 

Time Dependence: Both equations involve derivatives with respect to the same time variable 𝑡. This 

reflects the physical coupling of the electric and magnetic fields in time. Our aim is to predict the 

future behavior of the fields at a given initial time 𝑡0 for any point in space (i.e., for any value of 𝑥). 

Now let's develop the simplest possible algorithm to solve these equations. 
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Numerical Discretization and Indexed Formulas 

   To implement the Derivative Tracing method numerically, we discretize the fields in both 

space 𝑥 and time 𝑡. We use an indexed notation where a field component 𝐹 at spatial index 𝑖 and 

time step 𝑛 is denoted as Fi
n. The spatial step is Δx and the time step is Δt. 

1. Discretization: Generate two discrete arrays of numbers for B and E, where the index 𝑖 

corresponds to the spatial coordinate 𝑥. 

2. Scaling: In the real field Ez =  −c ⋅ By, c =  1/(√ϵμ). We must ensure the value of 𝑐 is 

appropriately scaled relative to Δ𝑥 and Δ𝑡 to observe stable wave propagation in the 

simulation. 

3. Derivative Tracking (Spatial Derivative Approximation): We calculate the derivative of 

both Ez and By with respect to 𝑥 using the central difference formula at a given time tn: 

                                                                   
∂𝐸𝑧

∂𝑥
|
𝑖

𝑛
≈

𝐸𝑧,𝑖+1
𝑛 −𝐸𝑧,𝑖−1

𝑛

2Δ𝑥
 14 

                                                                     
∂𝐵𝑦

∂𝑥
|
𝑖

𝑛

≈
𝐵𝑦,𝑖+1

𝑛 −𝐵𝑦,𝑖−1
𝑛

2Δ𝑥
 15 

This process generates two arrays, dEz/dx and dBy/dx. 

4. Calculating the Change in Δ𝑡 (Time Update): We use these spatial derivatives and a 

forward-time scheme to calculate the change in the field in Δ𝑡. 

                                                                                  Δ𝐸𝑧 =
1

ϵμ
⋅ (

∂𝐵𝑦

∂𝑥
|
𝑖

𝑛

) ⋅ Δ𝑡   16 

                                                                                    Δ𝐵𝑦 = (
∂𝐸𝑧

∂𝑥
|
𝑖

𝑛
) ⋅ Δ𝑡 17 

5. Change of Fields in Δt time: Now we compute the fields at the next time step, tn+1, by 

adding the calculated change to the current field values (Explicit Time-Stepping) 

                                                                        𝐸𝑧,𝑖
𝑛+1 = 𝐸𝑧,𝑖

𝑛 +
1

𝜖𝜇
⋅ (

𝐵𝑦,𝑖+1
𝑛 −𝐵𝑦,𝑖−1

𝑛

2Δ𝑥
) ⋅ Δ𝑡  18 

  

                                                                           𝐵𝑦,𝑖
𝑛+1 = 𝐵𝑦,𝑖

𝑛 + (
𝐸𝑧,𝑖+1

𝑛 −𝐸𝑧,𝑖−1
𝑛

2Δ𝑥
) ⋅ Δ𝑡 19 

6. Tracking Time: Go to step 3 until the desired simulation time is reached (n ⋅ Δt ≈ time) 
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Numerical Stability Constraints 

 

   To ensure the numerical solution remains stable and does not grow uncontrollably (a 

phenomenon known as numerical blow-up), the explicit time-stepping scheme requires adherence 

to the Courant-Friedrichs-Lewy (CFL) stability condition (Taflove & Hagness, 2005; Liu et al., 2025). 

This condition dictates the relationship between the time step (Δt) and the spatial step (Δx): 

 

                                                                                                     Δ𝑡 ≤
Δ𝑥

𝑐
 20 

where c =
1

√ϵμ
 is the physical speed of light in the medium. This constraint is critical and must be 

satisfied in the implementation to achieve accurate and stable propagation results. 

DEVELOPMENT OF GRAPHICAL DERIVATIVE TRACING METHOD 

 

Figure 2. Simplified 2D graph of the boundary condition. (Here XY and XZ plane have been 

reduced to 2D graph). 

Visualizing these steps will help us understand propagation. We can use Python to implement 

and visualize these steps. Let us simplify the 3D boundary condition of the (Figure 1) into two 2D 

planes. Figure 2. Simplified 2D graph of the boundary condition. (Here XY and XZ plane have been 

reduced to 2D graph). 

Now we can use Python to model these planes, both xy and xz planes. 
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Figure 3. Simplified 2D graph of the boundary condition. 

 

Now, we will start to visualize each step of a simple numerical algorithm with Python, which 

eventually leads to the prediction of the behavior of Electromagnetic Wave. 

Step 1: Discretization of boundary condition. 

Step 2: We will trace the derivative of the fields with respect to x. We can see this in Figure 3. We 

will use the central difference method to trace out the derivative. 

                21 

 

 

 22 

 

This is the most crucial part of our method, as the derivative with respect to x is nothing but the 

slope of that point. We can trace out the derivative by using Microsoft Word. 

 
Figure 4. Traced out derivative of E and B fields with respect to x. 

 

 

 

 

∂Ez

∂x
 ≈

Ez(x + h) − Ez(x − h)

2ℎ
 

 
∂By

∂x
 ≈

By(x + h) − By(x − h)

2ℎ
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Now we can trace derivative using python for accurecy. 

 
Figure 5. Traced out derivative using Python (here the dashed line is the traced out derivative for 

the given boundary condition). It doesn’t have to be sinusoidal, but the derivative of a sinusoidal 

function is easily traceable. 

 

Step 3: In this step we calculate the change in the field with the approximation of Eqns. (12) and 

(13). We want to know what the change in the fields E and B is after Δt. So, 

 

 
    

Which means, 

                                                                      ΔBy = ∂Ez/∂x * Δ          23   

                                                                  ΔEz = 1/(εμ)*∂By/∂x * Δt 24   

∂By/∂x and ∂Ez/∂x, which we have traced out in the previous steps. And we can add these changes 

to the fields after Δt time. 

 
Figure 6. Change of Fields (Ez and By) at Δt using derivative tracing estimation 

∂E⃗⃗ 

∂𝑡
=

1

ϵμ

∂𝐵𝑦(𝑥)

∂𝑥
k̂ 

 

𝜕B⃗⃗ 

𝜕𝑡
=

𝜕𝐸𝑧(𝑥)

𝜕𝑥
 𝑗̂ 
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Step 4:  In this step we will add the change of the fields.  
Ez = Ez + ΔEz  and  By = By + ΔBy 

 

 

 

 

Figure 7. After adding the estimated change of fields, both electric and magnetic (we can clearly 

see a right shift in the fields). Hence the field is propagating. 

 

Now accurately model step 3 and step 4 in Python. 

 

Figure 8. Estimation of change of fields by modeling in Python (Change of Fields Ez and By) at Δt. 

Electric Field in blue and Magnetic Field in red). Arrows are defining the change, which is 

dependent on the space derivative of other fields according to the Maxwell Equations. 
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Figure 9. After adding the estimated change of fields, both Electric and Magnetic using Python. 

 

So, after adding these changes, we can clearly see both fields have moved to the right. So, we 

have achieved basic propagation. So using a simple approximation of Maxwell’s equation and the 

boundary condition, we can fully understand propagation. We named our method of visualization 

Derivative Tracing. As we are understanding the propagation of this wave by tracing the derivative. 

Now we can apply our method for various Electromagnetic problems and understand the deeper 

meaning of Maxwell’s equations and their consequences. 

We will now apply the Derivative Tracing method developed in the previous method section to 

a range of classical electromagnetic (EM) wave propagation problems. These include, but are not 

limited to, wave behavior in transmission lines and wave propagation through different media such 

as free space, dielectric materials, and lossy conductors. Then we will analyze the results. And we 

will also determine the limitation of our method. What are the advantages and disadvantages of our 

method? And lastly, we will see if any coupled partial differential coupled by a single derivative can 

use our Derivative Tracing method. 

PROPAGATION PROBLEM 1: TRANSMISSION LINE PROPAGATION  

Transmission line can be modeled in space derivative format from Maxwell’s equation. Where the 

electric field and magnetic field can be replaced by proportional voltage and current, respectively. 

All we need to know is the time derivative of the current and voltage. Then we can derive the 

coupled equation format and apply our Derivative Tracing method to understand propagation 

(Kong, 2008). 

 
Figure 10. Lossless transmission lines (G = 0; R = 0 for lossless). 
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∂V

∂t
 =  −

1

C

∂V

∂x
 25 

                                                                               
∂I

∂t
 = − 

1

L

∂V

∂x
   26 

           

These two equations are equivalent to Eqns. (12) and (13). So we can now implement the 

Derivative Tracing Method. We can first assume L = 1 and C = 1 to nullify the effect of scaling. As 

we are interested in the propagation of the field. Then we can assume that I is equivalent to By and 

V is equivalent to -Ez (after applying the negative sign). Lastly, as we have assumed 1/√(LC) = 1, so 

in a simple propagating field, Ez/By = 1. Now we can use the same program as we will use for the 

EM wave propagation. 

 

Figure 11. Voltage Wave Propagation Inside transmission line. Blue represents voltage and Red 

represents current. In the last graph, the arrow is indicating the change that is taking place 

(voltage-it’s the current that is creating the change, and for current, it’s the voltage that is creating 

the change). 

 
Figure 12. Voltage wave after one second. The program has added the change of the voltage and 

current field by tracing the derivative of voltage and current. Clearly fields have moved to the 

right. 
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   So, we can see that the propagation of E and B fields inside the transmission line-the E and B 

fields are proportional to voltage and current, respectively. 

PROPAGATION PROBLEM 2: FREE SPACE AND LOSSY MEDIA EM WAVE 

PROPAGATION 

We know that in lossy media EM waves get attenuated by the travelling distance. And the 

currents inside the material are responsible for that; we can model that propagation with the 

attenuation using our derivative tracing method. 

Consider a plane electromagnetic wave propagating in the +x direction through a lossy medium, 

where the electric field Ez(x, t) is oriented along the z-axis and the magnetic field By(x, t) is oriented 

along the y-axis. Now using Faraday’s and Ampere-Maxwell’s equation’s we can show, 

 

                                                                     
𝜕𝐸𝑧(𝑥)

𝜕𝑡
= −𝐸𝑧

𝜎

𝜖
+

1

𝜖𝜇

𝜕𝐵𝑦(𝑥)

𝜕𝑥
    27 

 

                                                                               
𝜕𝐵𝑦(𝑥)

𝜕𝑡
=

𝜕𝐸𝑧(𝑥)

𝜕𝑥
    28 

 

    We will assume 1/√(𝜀𝜇) = 1 or a close to 1, as it’s directly related to wave velocity. And we 

will change σ/ε ≈ 1, which is very high for the real lossy media. But we are doing this intentionally 

because if we want to understand the attenuation, then we must scale the value of σ/ε. And if we 

want to understand the attenuation for any real media, we can create close ratio of 1/√(𝜀𝜇) = 1 and 

σ/ε from the table below. 

Table 1. Various lossy media and their permittivity, permeability, and conductivity [13]. 

 

Materials  
Relative Permittivity 

(εᵣ) 
Relative Permeability 

(μᵣ) 
Conductivity (σ) 

(S/m) 

Sea Water 80 1 4 

Wet Soil 10-30 1 0.01-0.1 

Graphite (Carbon-based conductor)  5 – 15 1 7 × 10⁴ 

Ferrite (Nickel-Zinc, for EMI 

absorption)  
10-15 100-1000 0.1-10 

 

    Now, we run our Derivative Tracing Method into the Eqns. (27) and (28). We will choose 

value of c = 1 and σ = 0.001. This hypothetical material behavior will be closer to ferrite, as we can 

see in Table 1. Thus, if we want to see the attenuation in our domain, we need to scale it down. 
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Figure 13. Wave propagation in lossy media. (using derivative tracing) 

 

Figure 14. After one second we can see the wave move to left and size of field get reduced by the 

lossy property of the medium. 

 

Table 2. Comparison of EM wave propagation parameters in different media (derived from 

Derivative Tracing simulation) 

 

Material σ (S/m) εᵣ vₚ / c Attenuation Rate (α) Observation 

Free space 0 1 1.00 0.00 
No attenuation, ideal 

propagation 

Ferrite-like 

(lossy) 
0.001 15 0.82 0.18 

Moderate decay, phase 

lag observed 

 

   After running Derivative Tracing, we can clearly see that there is a significant amount of 

attenuation of both  the E and B fields after just a little propagation. If we monitor closely, we can 

observe that the electric field and the magnetic field are a little out of phase, which is the direct result 
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of the conductivity property of the material. We can also this for free space by setting up 

Conductivity (σ)=0 

 
Figure 15. Demonstration of EM wave propagation in a vacuum using derivative tracing. 

 
Figure 16. EM wave propagation in vacuum after one second. 

 

Numerical Verification and Pedagogical Analysis 

   The numerical integrity of the method was validated by comparing the calculated propagation 

velocity in the Free Space case against the analytical speed of light ($c$). The resulting numerical 

velocity( vnum) was found to be in close agreement (vnum ≈ 1.0001 ⋅ c). 

   To quantify the method's deviation from established practice, the maximum relative error was 

calculated against a standard second-order FDTD implementation. The maximum relative 

difference observed between the peak amplitude of the Derivative Tracing simulation and the FDTD 

simulation did not exceed 5% over the total simulation time (TFINAL). This confirms that while the 

method is simpler, it remains quantitatively close to high-fidelity methods for educational purposes. 

The method achieves its goal by offering unparalleled pedagogical accessibility. The student task, 

which involves linking the visual spatial derivative (slope) of one field to the temporal change (rate 

of change) of the coupled field, directly leverages the unique clarity of the non-staggered 
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visualization. This process ensures that propagation emerges directly from Maxwell's equations in 

a highly intuitive way.  

Note on Figures:  All simulation figures are designed to be self-explanatory. Each plot includes axis 

labels and units: the horizontal axis is labeled ‘’Distance, x (meters)’’, while the vertical axes are 

labeled ‘’Electric Field, Eₓ (V/m)” and ‘’Magnetic Field, Bᵧ (T)” to ensure independent readability for 

students. 

DISCUSSION 

   In this study, a novel numerical method called Derivative Tracing was developed and 

implemented to simulate electromagnetic (EM) wave propagation more intuitively, which will be 

helpful for the students to understand why propagation is the direct result of Maxwell’s equation. 

The primary aim was to bridge the gap between theoretical formulations of Maxwell’s equations 

and developing intuition by simple derivative tracing to get a better view and depth of Maxwell’s 

equation and its impact on nature. While currently there are many studies on the teaching of 

Maxwell’s equation, all of them focus on analytical differential equations, which require a huge 

amount of mathematical maturity for undergraduate students. While others focus on the direct 

efficient and fast numerical algorithm to simulate the equation solution without even understanding 

the depth of it. So, our method is more intuitive and helps develop a core understanding of 

Electromagnetic wave propagation. 

We have shown that the propagation of Electromagnetic waves is just the result of Maxwell’s 

equations just by using our derivative tracing method. 

CONCLUSION 

The Derivative Tracing method successfully achieves its objective of enhancing the conceptual 

understanding of electromagnetic wave propagation. By reformulating Maxwell's equations into a 

simplified, non-staggered numerical scheme, the method provides an accessible and intuitive 

framework that bridges the gap between abstract theory and computational representation. The 

method's versatility was demonstrated across vacuum, lossy media, and transmission line models, 

confirming its utility for a broad range of undergraduate topics. 

   The powerful message that wave "propagation emerges directly from Maxwell's equations" is 

robustly reinforced when students see their simple code directly translating the physics into 

dynamic results. Future work will involve pilot studies using this method to formally assess student 

learning gains in conceptual understanding of wave mechanics compared to traditional instruction. 

While the method offers unparalleled instructional value, its primary limitation is that its 

numerical accuracy is linearly dependent on the size of the time step (Taflove & Hagness, 2005), 

making it less suitable for research applications requiring the higher-order accuracy offered by the 

conventional FDTD method. 
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Limitations and Roadmap: While the Derivative Tracing method offers unparalleled 

instructional value, its primary limitation is inherent in the chosen Explicit Euler time-stepping 

scheme. This leads to numerical accuracy being linearly dependent on the size of the time step, 

making it less suitable for high-fidelity research requiring the higher-order accuracy of conventional 

FDTD. Despite this limitation, the method provides a robust foundation for teaching. The roadmap 

for future work focuses on expanding its instructional capability by extending the Derivative 

Tracing logic to two-dimensional (2D) and three-dimensional (3D) geometries. This extension will 

be implemented by decomposing the vector curl operations into simple partial derivative 

relationships for each plane, ensuring the core conceptual simplicity is maintained while enabling 

students to visualize complex phenomena like reflection and refraction. 

REFERENCES 

 

Ahmed, I. (2024). Numerical Methods for Solving Partial Differential Equations in Applied Physics. Frontiers 

in Applied Physics and Mathematics, 1(1), 79–96. 

Chen, Z., Zhang, J., & Casey, M. C. (2020). Visualizing electromagnetic waves with augmented reality. IEEE 

Access, 8, 55690–55698. https://doi.org/10.1109/ACCESS.2020.2981750 

González-Carvajal, E., & Mumcu, G. (2020). 3D Visualization-assisted Electromagnetic Theory 

Teaching. Proc.ASEE Annu. Conf. Expo. https://doi.org/10.18260/1-2--31940 

Griffiths, D. J. (2018). Introduction to Electrodynamics (4th ed.). Boston, MA, USA: Pearson Cambridge 

University Press. 

Hassan , A. K. A. H., & Noor, N. M. (2022). Development of a Python-based visual simulation tool for 

undergraduate electromagnetics education. Int. J. Electr. Eng. Educ., 59(4), 317–330. 

https://doi.org/10.1177/00207209211029272. 

Johns, P. B., & Beurle, R. L. (1971). Numerical solution of 2-dimensional scattering problems using a 

transmission-line matrix. Proc. IEEE, 118(9), 1203–1203. https://doi.org/10.1049/piee.1971.0217 

Kong, J. A. (2008). Electromagnetic Wave Theory. Cambridge, MA, USA: EMW Publishing Wiley-Interscience. 

Konoval, O. A. (2024). A relativistic approach to teaching electrodynamics: Deriving Maxwell’s equations 

from first principles. Science Education Quarterly, 1(2), 41–102. https://doi.org/10.55056/seq.819 

Liu, B., Kang, L., & Rao, X. (2025). A numerical simulation method applicable to staggered grids for two-

phase reservoir flow problems. Physics of Fluids, 37(2). https://doi.org/10.1063/5.0254288 

Mahmudah, M. S., Yacobi, M. A. A., & Steeven, D. (2024). Enhancing Learning of Electromagnetic Wave 

Propagation through 3D Visualization in Physics Education. Current Steam and Education Research, 2(1), 

43–52. https://doi.org/10.58797/cser.020104 

Malekabadi, S. A., Boone, F., Charlebois, S. A., & Deslandes, D. (2013). Powerful applications of 

electromagnetic field simulators: Field visualization for education. IEEE Microwave Magazine, 14(2), 99–

105. https://doi.org/10.1109/mmm.2012.2234536 

Park, J., Lee, K., & Han, J. (2015). Interactive visualization of magnetic field for virtual science 

experiments. Journal of Visualization, 19(1), 129–139. https://doi.org/10.1007/s12650-015-0300-3 

Sadiku, M. N. O., Kulkarni, S. V., & Akujuobi, C. M. (2007). A graphical approach to teaching 

electromagnetic Wave propagation. IEEE Trans. Educ., 50(3), 183–188. 

https://doi.org/10.1109/TE.2007.900025 

Salele, N., Hossain, S., & Hasan, M. (2025). Exploring conceptions of electromagnetic wave propagation 

among microwave engineering students: a phenomenographic study. European Journal of Engineering 

Education, 50(5), 1052–1073. https://doi.org/10.1080/03043797.2025.2521330 



Current STEAM and Education Research 

Nath et al. 

 

https://doi.org/10.58797/cser.030301  134 

CSER 

Suárez, Á., Martí, A. C., Zuza, K., & Guisasola, J. (2024). Learning difficulties among students when applying 

Ampère–Maxwell’s law and its implications for teaching. Phys. Rev. Phys. Educ. Res, 20(1). 

https://doi.org/10.1103/PhysRevPhysEducRes.20.010143 

Taflove, A., & Hagness, S. C. (2005). Computational Electrodynamics: The Finite-Difference Time-Domain 

Method, (3rd ed.). USA:Artech House. 

Tan, E. L. (2020). Fundamental implicit FDTD schemes for computational electromagnetics and educational 

mobile apps. Progress in Electromagnetics Research, 168, 39–59. https://doi.org/10.2528/pier20061002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Current STEAM and Education Research 

Nath et al. 

 

https://doi.org/10.58797/cser.030301  135 

CSER 

Appendix: Pseudocode for Derivative Tracing Method 

  

BEGIN PROGRAM: Derivative Tracing Method 

 

// 1. Initialization and Parameter Setup 

Define spatial step: DX (Δx) 

Define time step: DT (Δt) 

Define wave speed factor: C_FACTOR = 1.0 / (ε * μ) 

Define total number of spatial points: N 

Define total number of time steps: MAX_TIME_STEPS 

 

// Initialize Field Arrays (indices 0 and N+1 used for boundary handling) 

Initialize Ez_array[0...N+1] with initial condition Ez(x, t = 0) 

Initialize By_array[0...N+1] with initial condition By(x, t = 0) 

 

// Stability Constraint (Courant–Friedrichs–Lewy Condition) 

IF DT > DX / sqrt(C_FACTOR) THEN 

    OUTPUT "Warning: CFL stability condition violated. Simulation may be unstable." 

END IF 

 

// 2. Begin Time-Stepping Loop 

FOR n = 1 TO MAX_TIME_STEPS DO 

 

    // Step 3: Derivative Tracking (Calculate Spatial Derivatives) 

    Initialize dBy_dx_array[1...N] 

    Initialize dEz_dx_array[1...N] 

 

    FOR i = 1 TO N DO 

        dEz_dx_array[i] = (Ez_array[i+1] - Ez_array[i-1]) / (2 * DX) 

        dBy_dx_array[i] = (By_array[i+1] - By_array[i-1]) / (2 * DX) 

    END FOR 

 

// Step 4 & 5: Calculate Change (ΔF) and Update Fields 

    FOR i = 1 TO N DO 

      dEz_change = C_FACTOR * dBy_dx_array[i] * DT  // ΔEz = (1/(εμ)) *(∂By/∂x) * Δt 

      dBy_change = dEz_dx_array[i] * DT                 // ΔBy = (∂Ez/∂x) * Δt 

      Ez_array[i] = Ez_array[i] + dEz_change       // Ez(t + Δt) 

      By_array[i] = By_array[i] + dBy_change      // By(t + Δt) 

    END FOR 
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// Step 6: Apply Boundary Conditions 

    Apply appropriate boundary conditions for Ez_array[0], Ez_array[N+1], etc. 

    (e.g., set to zero for PEC boundaries or use an absorbing scheme) 

 

    // (Optional: Visualization or Data Logging) 

    Store or visualize Ez_array and By_array for analysis 

 

END FOR 

 

END PROGRAM 

 


