Understanding Cyclotron Motion: A Visual Approach to Electron Dynamics in Electric and Magnetic Fields
DOI:
https://doi.org/10.58797/cser.020202Keywords:
cyclotron, electron, electrostatic, magnetostaticAbstract
Physics material is often material that is difficult for students to understand because of its abstract concepts, one of which is in the material of electric and magnetic fields that discuss the motion of cyclotrons in connecting theoretical concepts and practical applications. Cyclotron motion is accelerated by an electric field that is influenced by the Lorentz force on the combination of electric and magnetic fields. This paper is made with the aim to analyze and visualize the electric field and magnetic field around the cyclotron motion particles using Python animation. In this study, a helix-shaped trajectory is used to represent the movement of electron particles. The animation developed depicts the electric and magnetic field vectors moving around the helix trajectory. In running the particle trajectory animation, numerical equations are involved. The involved numerical equations are second-order ordinary differential equations. This research not only provides theoretical insights into the electrostatic and magnetostatic properties of electron particles but also provides effective visualizations for further education and research. The resulting animation facilitates to enhance the understanding of the concept of how electric and magnetic fields interact and move in the context of electron particles moving in a helix trajectory, opening up opportunities for further exploration in the development of knowledge related to cyclotron motion that is often difficult to understand only through theoretical approaches.
References
Bellan, P. M. (2016). Orbits of magnetized charged particles in parabolic and inverse electrostatic potentials. Journal of Plasma Physics, 82(1). https://doi.org/10.1017/s0022377816000064
Burman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2015). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472–501. https://doi.org/10.1002/nme.4823
Calabretta, L., & Seidel, M. (2016). 50 Years of Cyclotron Development. IEEE Transactions on Nuclear Science, 63(2), 965–991. https://doi.org/10.1109/tns.2015.2499238
Cardoso, A. M., Soussi, D., Qasim, S., Dunin-Borkowska, A., Rupasinghe, T., Ubhi, N., & Ranasinghe, L. (2024). The Use of Animations Depicting Cardiac Electrical Activity to Improve Confidence in Understanding of Cardiac Pathology and Electrocardiography Traces Among Final-Year Medical Students: Nonrandomized Controlled Trial. JMIR Medical Education, 10, e46507–e46507. https://doi.org/10.2196/46507
Ciftja, O., Livingston, V., & Thomas, E. (2017). Cyclotron motion of a charged particle with anisotropic mass. American Journal of Physics, 85(5), 359–363. https://doi.org/10.1119/1.4975599
Esfahani, A. A., Böser, S., Buzinsky, N., Cervantes, R., Claessens, C., Viveiros, L. de, Fertl, M., Formaggio, J. A., Gladstone, L., Guigue, M., Heeger, K. M., Johnston, J., Jones, A. M., Kazkaz, K., LaRoque, B. H., Lindman, A., Machado, E., Monreal, B., Morrison, E. C., & Nikkel, J. A. (2020). Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8. New Journal of Physics, 22(3), 033004–033004. https://doi.org/10.1088/1367-2630/ab71bd
Hasdeo, E. H., Frenzel, A. J., & Song, J. C. W. (2019). Cyclotron motion without magnetic field. New Journal of Physics, 21(8), 083026–083026. https://doi.org/10.1088/1367-2630/ab351c
Katoh, M., Fujimoto, M., Mirian, N. S., Konomi, T., Taira, Y., Kaneyasu, T., Hosaka, M., Yamamoto, N., Mochihashi, A., Takashima, Y., Kuroda, K., Miyamoto, A., Miyamoto, K., & Sasaki, S. (2017). Helical Phase Structure of Radiation from an Electron in Circular Motion. Scientific Reports, 7(1), 6130. https://doi.org/10.1038/s41598-017-06442-2
Kazama, Y., Kojima, H., Miyoshi, Y., Kasahara, Y., Usui, H., Wang, B. ‐J, Wang, S. ‐Y, Tam, T., Chang, T. ‐F, Ho, P., Asamura, K., Kumamoto, A., Tsuchiya, F., Kasaba, Y., Matsuda, S., Shoji, M., Matsuoka, A., Teramoto, M., Takashima, T., & Shinohara, I. (2018). Density Depletions Associated With Enhancements of Electron Cyclotron Harmonic Emissions: An ERG Observation. Geophysical Research Letters, 45(19). https://doi.org/10.1029/2018gl080117
Khalaf, M., Rivera, N., & Kaminer, I. (2023). Cyclotron radiation from shaped electron wavefunctions. New Journal of Physics, 25(5), 053006–053006. https://doi.org/10.1088/1367-2630/accec1
Lou, Y., Cao, X., Ni, B., Tu, W., Gu, X., Fu, S., Xiang, Z., & Ma, X. (2021). Diffuse Auroral Electron Scattering by Electrostatic Electron Cyclotron Harmonic Waves in the Dayside Magnetosphere. Geophysical Research Letters, 48(5). https://doi.org/10.1029/2020gl092208
Mahmudah, M.S., Yacobi, M.A.A., & Steeven, D. (2024). Enhancing Learning of Electromagnetic Wave Propagation through 3D Visualization in Physics Education. (2024). Current STEAM and Education Research, 2(1), 43-52. https://doi.org/10.58797/cser.020104
Matevosyan, A., & Allahverdyan, A. E. (2021). Nonequilibrium, weak-field-induced cyclotron motion: A mechanism for magnetobiology. Physical Review. E, 104(6). https://doi.org/10.1103/physreve.104.064407
Namgoong, H., Choi, H., Ghergherehchi, M., Ha, D., Mumyapan, M., Chai, J.-S., Lee, J., & Song, H. (2023). Development of magnetic field measurement system for AMS cyclotron. Nuclear Engineering and Technology, 55(8), 3114–3120. https://doi.org/10.1016/j.net.2023.05.018
Pikin, A., Pahl, H., & Wenander, F. (2020). Method of controlling the cyclotron motion of electron beams with a nonadiabatic magnetic field. Physical Review. Accelerators and Beams, 23(10). https://doi.org/10.1103/physrevaccelbeams.23.103502
Poirier, T. I., Newman, K., & Ronald, K. (2019). An Exploratory Study Using Visual Thinking Strategies to Improve Undergraduate Students’ Observational Skills. American Journal of Pharmaceutical Education, 84(4), 7600. https://doi.org/10.5688/ajpe7600
Singh, K., Itteera, J., Singh, R. R., Malhotra, S., & Rathi, D. (2019). Development of Normal Conducting Cavity Magnet for 42 GHz 200 kW Long Pulse Gyrotron. IEEE Transactions on Magnetics, 55(11), 1–6. https://doi.org/10.1109/tmag.2019.2931864
Stenzel, R. L., & Urrutia, J. M. (2015). Helicon modes in uniform plasmas. III. Angular momentum. Physics of Plasmas, 22(9). https://doi.org/10.1063/1.4930107
Tarvainen, O., Angot, J., Chauveau, P., Galatà, A., & Thuillier, T. (2024). Experimental investigation of electrostatic capture of 1+ ions in charge breeder electron cyclotron resonance ion source plasma. Physics of Plasmas, 31(5). https://doi.org/10.1063/5.0202875
Tytler, R. (2020). The role of visualisation in science: a response to “Science teachers’ use of visual representations.” Studies in Science Education, 1–11. https://doi.org/10.1080/03057267.2020.1766826
Vladimirov, G., Kostyukevich, Y., Hendrickson, C. L., Blakney, G. T., & Nikolaev, E. (2015). Effect of Magnetic Field Inhomogeneity on Ion Cyclotron Motion Coherence at High Magnetic Field. European Journal of Mass Spectrometry, 21(3), 443–449. https://doi.org/10.1255/ejms.1375
Zhou, B., Zhao, J., & Xu, J. (2024). Research on animated physics courseware technology for digital media. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-2161
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rizky Candraditya, Cheryl Puspa Ningtyas, Muhammad Rafi Athallah Aziz, Lailatu Syifa Fadilah, Annisa Dian Maharatri, Azril Maulana Gibran

This work is licensed under a Creative Commons Attribution 4.0 International License.