Understanding Cyclotron Motion: A Visual Approach to Electron Dynamics in Electric and Magnetic Fields

Authors

  • Rizky Candraditya Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia
  • Cheryl Puspa Ningtyas Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia
  • Muhammad Rafi Athallah Aziz Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia
  • Lailatu Syifa Fadilah Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia
  • Annisa Dian Maharatri Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia
  • Azril Maulana Gibran Department of Physics, Universitas Negeri Jakarta, Jl R. Mangun Muka No. 1 Jakarta Timur 13220, Indonesia

DOI:

https://doi.org/10.58797/cser.020202

Keywords:

cyclotron, electron, electrostatic, magnetostatic

Abstract

Physics material is often material that is difficult for students to understand because of its abstract concepts, one of which is in the material of electric and magnetic fields that discuss the motion of cyclotrons in connecting theoretical concepts and practical applications. Cyclotron motion is accelerated by an electric field that is influenced by the Lorentz force on the combination of electric and magnetic fields. This paper is made with the aim to analyze and visualize the electric field and magnetic field around the cyclotron motion particles using Python animation. In this study, a helix-shaped trajectory is used to represent the movement of electron particles. The animation developed depicts the electric and magnetic field vectors moving around the helix trajectory. In running the particle trajectory animation, numerical equations are involved. The involved numerical equations are second-order ordinary differential equations. This research not only provides theoretical insights into the electrostatic and magnetostatic properties of electron particles but also provides effective visualizations for further education and research. The resulting animation facilitates to enhance the understanding of the concept of how electric and magnetic fields interact and move in the context of electron particles moving in a helix trajectory, opening up opportunities for further exploration in the development of knowledge related to cyclotron motion that is often difficult to understand only through theoretical approaches.

References

Bellan, P. M. (2016). Orbits of magnetized charged particles in parabolic and inverse electrostatic potentials. Journal of Plasma Physics, 82(1). https://doi.org/10.1017/s0022377816000064

Burman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2015). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472–501. https://doi.org/10.1002/nme.4823

Calabretta, L., & Seidel, M. (2016). 50 Years of Cyclotron Development. IEEE Transactions on Nuclear Science, 63(2), 965–991. https://doi.org/10.1109/tns.2015.2499238

Cardoso, A. M., Soussi, D., Qasim, S., Dunin-Borkowska, A., Rupasinghe, T., Ubhi, N., & Ranasinghe, L. (2024). The Use of Animations Depicting Cardiac Electrical Activity to Improve Confidence in Understanding of Cardiac Pathology and Electrocardiography Traces Among Final-Year Medical Students: Nonrandomized Controlled Trial. JMIR Medical Education, 10, e46507–e46507. https://doi.org/10.2196/46507

Ciftja, O., Livingston, V., & Thomas, E. (2017). Cyclotron motion of a charged particle with anisotropic mass. American Journal of Physics, 85(5), 359–363. https://doi.org/10.1119/1.4975599

Esfahani, A. A., Böser, S., Buzinsky, N., Cervantes, R., Claessens, C., Viveiros, L. de, Fertl, M., Formaggio, J. A., Gladstone, L., Guigue, M., Heeger, K. M., Johnston, J., Jones, A. M., Kazkaz, K., LaRoque, B. H., Lindman, A., Machado, E., Monreal, B., Morrison, E. C., & Nikkel, J. A. (2020). Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8. New Journal of Physics, 22(3), 033004–033004. https://doi.org/10.1088/1367-2630/ab71bd

Hasdeo, E. H., Frenzel, A. J., & Song, J. C. W. (2019). Cyclotron motion without magnetic field. New Journal of Physics, 21(8), 083026–083026. https://doi.org/10.1088/1367-2630/ab351c

Katoh, M., Fujimoto, M., Mirian, N. S., Konomi, T., Taira, Y., Kaneyasu, T., Hosaka, M., Yamamoto, N., Mochihashi, A., Takashima, Y., Kuroda, K., Miyamoto, A., Miyamoto, K., & Sasaki, S. (2017). Helical Phase Structure of Radiation from an Electron in Circular Motion. Scientific Reports, 7(1), 6130. https://doi.org/10.1038/s41598-017-06442-2

Kazama, Y., Kojima, H., Miyoshi, Y., Kasahara, Y., Usui, H., Wang, B. ‐J, Wang, S. ‐Y, Tam, T., Chang, T. ‐F, Ho, P., Asamura, K., Kumamoto, A., Tsuchiya, F., Kasaba, Y., Matsuda, S., Shoji, M., Matsuoka, A., Teramoto, M., Takashima, T., & Shinohara, I. (2018). Density Depletions Associated With Enhancements of Electron Cyclotron Harmonic Emissions: An ERG Observation. Geophysical Research Letters, 45(19). https://doi.org/10.1029/2018gl080117

Khalaf, M., Rivera, N., & Kaminer, I. (2023). Cyclotron radiation from shaped electron wavefunctions. New Journal of Physics, 25(5), 053006–053006. https://doi.org/10.1088/1367-2630/accec1

Lou, Y., Cao, X., Ni, B., Tu, W., Gu, X., Fu, S., Xiang, Z., & Ma, X. (2021). Diffuse Auroral Electron Scattering by Electrostatic Electron Cyclotron Harmonic Waves in the Dayside Magnetosphere. Geophysical Research Letters, 48(5). https://doi.org/10.1029/2020gl092208

Mahmudah, M.S., Yacobi, M.A.A., & Steeven, D. (2024). Enhancing Learning of Electromagnetic Wave Propagation through 3D Visualization in Physics Education. (2024). Current STEAM and Education Research, 2(1), 43-52. https://doi.org/10.58797/cser.020104

Matevosyan, A., & Allahverdyan, A. E. (2021). Nonequilibrium, weak-field-induced cyclotron motion: A mechanism for magnetobiology. Physical Review. E, 104(6). https://doi.org/10.1103/physreve.104.064407

Namgoong, H., Choi, H., Ghergherehchi, M., Ha, D., Mumyapan, M., Chai, J.-S., Lee, J., & Song, H. (2023). Development of magnetic field measurement system for AMS cyclotron. Nuclear Engineering and Technology, 55(8), 3114–3120. https://doi.org/10.1016/j.net.2023.05.018

Pikin, A., Pahl, H., & Wenander, F. (2020). Method of controlling the cyclotron motion of electron beams with a nonadiabatic magnetic field. Physical Review. Accelerators and Beams, 23(10). https://doi.org/10.1103/physrevaccelbeams.23.103502

Poirier, T. I., Newman, K., & Ronald, K. (2019). An Exploratory Study Using Visual Thinking Strategies to Improve Undergraduate Students’ Observational Skills. American Journal of Pharmaceutical Education, 84(4), 7600. https://doi.org/10.5688/ajpe7600

Singh, K., Itteera, J., Singh, R. R., Malhotra, S., & Rathi, D. (2019). Development of Normal Conducting Cavity Magnet for 42 GHz 200 kW Long Pulse Gyrotron. IEEE Transactions on Magnetics, 55(11), 1–6. https://doi.org/10.1109/tmag.2019.2931864

Stenzel, R. L., & Urrutia, J. M. (2015). Helicon modes in uniform plasmas. III. Angular momentum. Physics of Plasmas, 22(9). https://doi.org/10.1063/1.4930107

Tarvainen, O., Angot, J., Chauveau, P., Galatà, A., & Thuillier, T. (2024). Experimental investigation of electrostatic capture of 1+ ions in charge breeder electron cyclotron resonance ion source plasma. Physics of Plasmas, 31(5). https://doi.org/10.1063/5.0202875

Tytler, R. (2020). The role of visualisation in science: a response to “Science teachers’ use of visual representations.” Studies in Science Education, 1–11. https://doi.org/10.1080/03057267.2020.1766826

Vladimirov, G., Kostyukevich, Y., Hendrickson, C. L., Blakney, G. T., & Nikolaev, E. (2015). Effect of Magnetic Field Inhomogeneity on Ion Cyclotron Motion Coherence at High Magnetic Field. European Journal of Mass Spectrometry, 21(3), 443–449. https://doi.org/10.1255/ejms.1375

Zhou, B., Zhao, J., & Xu, J. (2024). Research on animated physics courseware technology for digital media. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-2161

Downloads

Published

2024-08-10

How to Cite

Candraditya, R., Ningtyas, C. P. ., Aziz, M. R. A., Fadilah, L. S. ., Maharatri, A. D., & Gibran, A. M. . (2024). Understanding Cyclotron Motion: A Visual Approach to Electron Dynamics in Electric and Magnetic Fields. Current STEAM and Education Research, 2(2), 81-88. https://doi.org/10.58797/cser.020202