The Night Sky Brightness Measurement using OZT-ALTS Telescope based on Sky Quality Meter
DOI:
https://doi.org/10.58797/cser.020101Keywords:
all sky camera, sky brightness, sky quality meterAbstract
Sky brightness is an important parameter in astronomical observations. The brightness of the sky is affected by the level of light pollution. The problem of light pollution is faced by observatories around the world, including the ITERA Lampung Astronomical Observatory (OAIL) which has an OZT-ALTS telescope (robotic telescope) that routinely makes observations of celestial objects and is not immune from light pollution, so it is necessary to observe the brightness of the sky to know the source of light pollution, the value and contour pattern of sky brightness. Measurements were carried out on April 9 2022 using Sky Quality Meter (SQM). SQM is directed to each coordinate point with an azimuth interval of 22.5° and altitude of 15°. The measurement data is used to create a contour map of the brightness of the night sky. The contour mapping results are compared with the All Sky Camera image. Based on the sky brightness contour map, at an azimuth of 90° – 360° and an altitude of 20° there are a number of sources of light pollution from street lights and buildings with a sky brightness value of 12,626 mag/arcsec2. The darkest sky area is from azimuth 22.5° – 90° and altitude 0° - 90°, the sky brightness value is 19.31 mag/arcsec2. Based on observations, the night sky at the OZT-ALTS Telescope is of the City Sky - Bright Suburban type (Bortle Scale), and the visual magnitude limit is less than 5 magnitudes. The All Sky Camera shows the source of light pollution visually and its contour pattern matches the contour pattern from measurements using SQM.
References
Anderson, S. J., Kubiszewski, I., & Sutton, P. C. (2024). The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value. Remote Sensing, 16(14), 2591–2591. https://doi.org/10.3390/rs16142591.
Barentine, J. C., Wallner, S., & Kocifaj, M. (2023). Towards future challenges in the measurement and modelling of night sky brightness. Monthly Notices of the Royal Astronomical Society, 527(3), 5553–5558. https://doi.org/10.1093/mnras/stad3538.
Bartolomei, M., Olivieri, L., Bettanini, C., Cavazzani, S., & Fiorentin, P. (2021). Verification of Angular Response of Sky Quality Meter with Quasi-Punctual Light Sources. Sensors, 21(22), 7544–7544. https://doi.org/10.3390/s21227544.
Cavazzani, S., Ortolani, S., Bertolo, A., Binotto, R., Fiorentin, P., Carraro, G., I Saviane, & Zitelli. (2020). Sky Quality Meter and satellite correlation for night cloud-cover analysis at astronomical sites. Monthly Notices of the Royal Astronomical Society, 493(2), 2463–2471. https://doi.org/10.1093/mnras/staa416.
Espenshade, P., & Yoo, J. (2023). Sample Variance in Cosmological Observations with a Narrow Field of View. The Astrophysical Journal, 953(2), 163–163. https://doi.org/10.3847/1538-4357/ace71b.
Fiorentin, P., Bertolo, A., Cavazzani, S., & Ortolani, S. (2023). Laboratory Characterisation of a Commercial RGB CMOS Camera for Measuring Night Sky Brightness. Remote Sensing, 15(17), 4196–4196. https://doi.org/10.3390/rs15174196.
Fiorentin, P., Binotto, R., Cavazzani, S., Bertolo, A., Ortolani, S., & Ivo Saviane. (2022). Long-Time Trends in Night Sky Brightness and Ageing of SQM Radiometers. Remote Sensing, 14(22), 5787–5787. https://doi.org/10.3390/rs14225787.
Gao, P., Wu, T., Ge, Y., Yang, G., & Lu, Y. (2023). Correcting the nighttime lighting data underestimation effect based on light source detection and luminance reconstruction. International Journal of Applied Earth Observation and Geoinformation, 121, 103380–103380. https://doi.org/10.1016/j.jag.2023.103380.
Kocifaj, M., Kundracik, F., Barentine, J. C., & Bará, S. (2021). The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Monthly Notices of the Royal Astronomical Society: Letters, 504(1), L40–L44. https://doi.org/10.1093/mnrasl/slab030.
Puschnig, J., Wallner, S., Schwope, A., & Näslund, M. (2022). Long-term trends of light pollution assessed from SQM measurements and an empirical atmospheric model. Monthly Notices of the Royal Astronomical Society, 518(3). https://doi.org/10.1093/mnras/stac3003.
Shalaginov, M. Y., An, S., Yang, F., Su, P., Lyzwa, D., Agarwal, A. M., Zhang, H., Hu, J., & Gu, T. (2020). Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 20(10), 7429–7437. https://doi.org/10.1021/acs.nanolett.0c02783.
Tong, J. C. K., Wun, A. H. L., Chan, T. T. H., Lau, E. S. L., Lau, E. C. F., Chu, H. H. K., & Lau, A. P. S. (2023). Simulation of vertical dispersion and pollution impact of artificial light at night in urban environment. Science of the Total Environment, 902, 166101. https://doi.org/10.1016/j.scitotenv.2023.166101.
Wang, F., Shen, Y., Chen, T., Chen, Q., & Li, W. (2020). Improved multichannel singular spectrum analysis for post-processing GRACE monthly gravity field models. Geophysical Journal International, 223(2), 825–839. https://doi.org/10.1093/gji/ggaa339.
Wang, Y., Zhao, Y., Sun, W., Yang, F., Deng, L., He, F., Rong, Z., & Wei, Y. (2024). Assessing the Influence of Urban Lights on Night Sky Brightness with a Smartphone. Publications of the Astronomical Society of the Pacific, 136(4), 044501–044501. https://doi.org/10.1088/1538-3873/ad332a.
Wesołowski, M. (2023). The increase in the surface brightness of the night sky and its importance in visual astronomical observations. Scientific Reports, 13(1), 17091. https://doi.org/10.1038/s41598-023-44423-w.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gabriella Maharani, Hakim L. Malasan, Hendra Agus Prastyo, Aditya Abdilah Yusuf, Adhitya Oktaviandra

This work is licensed under a Creative Commons Attribution 4.0 International License.