Strategi Penerapan Smart Mobility untuk Mengurangi Kemacetan: Studi Komparasi di Tiga Ibu Kota Negara Asean

Authors

  • Brezinka Ayu Perdana Program Studi Rekayasa Sistem Transportasi Jalan, Politeknik Keselamatan Transportasi Jalan, Jl. Perintis Kemerdekaan No.17, Kota Tegal, Jawa Tengah 52125, Indonesia
  • Andhika Adiwidya Maheswara Program Studi Rekayasa Sistem Transportasi Jalan, Politeknik Keselamatan Transportasi Jalan, Jl. Perintis Kemerdekaan No.17, Kota Tegal, Jawa Tengah 52125, Indonesia
  • Rizal Aprianto Program Studi Rekayasa Sistem Transportasi Jalan, Politeknik Keselamatan Transportasi Jalan, Jl. Perintis Kemerdekaan No.17, Kota Tegal, Jawa Tengah 52125, Indonesia

DOI:

https://doi.org/10.58797/pilar.0401.04

Keywords:

ASEAN, kemacetan, mobilitas cerdas, sistem transportasi cerdas, urbanisasi perkotaan

Abstract

Abstract

Rapid urbanization in Southeast Asia has exerted significant pressure on urban transportation systems, particularly in metropolitan cities such as Jakarta, Bangkok, and Metro Manila. These cities face structural congestion problems driven by high population mobility, heavy dependence on private vehicles, and limited intermodal integration. This article aims to analyze and compare Smart mobility strategies implemented in the three capitals to mitigate traffic congestion. The study employs a qualitative descriptive approach through a literature review, examining scientific publications, policy reports, and relevant secondary data from 2020 to 2024. The findings indicate that Jakarta excels in public transport integration through the jaklingko system; Bangkok demonstrates strengths in the application of artificial intelligence and big data-based smart transportation technologies under the Thailand 4.0 framework; while Metro Manila focuses on public transport modernization and the deployment of traffic monitoring systems based on Intelligent Transportation Systems (ITS). This comparative analysis reveals that the effectiveness of Smart mobility implementation is highly dependent on policy coherence, digital infrastructure readiness, and inter-agency coordination. The article offers strategic recommendations for strengthening smart transportation policies in the ASEAN region and highlights opportunities for future research on big data integration and real-time transportation system evaluation based on public participation.

Abstrak                                                               

Urbanisasi yang pesat di kawasan Asia Tenggara telah memberikan tekanan signifikan terhadap sistem transportasi perkotaan, khususnya di kota-kota metropolitan seperti Jakarta, Bangkok, dan Metro Manila. Ketiga kota tersebut menghadapi permasalahan kemacetan struktural yang dipicu oleh tingginya mobilitas penduduk, ketergantungan pada kendaraan pribadi, serta lemahnya integrasi antarmoda transportasi. Artikel ini bertujuan untuk menganalisis dan membandingkan strategi Smart mobility yang diterapkan di ketiga ibu kota tersebut dalam upaya mengurangi kemacetan lalu lintas. Penelitian ini menggunakan metode studi literatur dengan pendekatan kualitatif deskriptif, melalui penelaahan dokumen ilmiah, laporan kebijakan, dan data sekunder terkini dalam rentang tahun 2020–2024. Hasil analisis menunjukkan bahwa Jakarta menonjol dalam integrasi moda transportasi publik melalui sistem JakLingko; Bangkok unggul dalam pemanfaatan teknologi transportasi cerdas berbasis kecerdasan artifisial dan big data dalam kerangka Thailand 4.0; sementara Metro Manila berfokus pada modernisasi transportasi umum serta penerapan sistem pengawasan lalu lintas berbasis Intelligent Transportation Systems (ITS). Studi perbandingan ini mengungkap bahwa keberhasilan implementasi Smart mobility sangat ditentukan oleh keterpaduan kebijakan, kesiapan infrastruktur digital, serta efektivitas koordinasi antarlembaga. Artikel ini memberikan rekomendasi strategis bagi penguatan kebijakan transportasi cerdas di kawasan ASEAN serta membuka peluang penelitian lanjutan terkait integrasi big data dan evaluasi sistem transportasi secara real-time berbasis partisipasi publik.

References

Abarca, C. (2025). MMDA: CCTV cameras with AI capabilities for NCAP. Inquirer.net. https://newsinfo.inquirer.net/2063857/fwd-cctvs-with-ai-capabilities-for-ncap

Affan, N. M., Achmad, N., & Helen, D. F. (2024). Comparative study on sustainable mobility: Assessing public transportation effectiveness in Jakarta and Bangkok. E3S Web of Conferences, 03007.

Ali, N. (2021). Evaluating sustainable urban transport systems: A review study for the identification of smart mobility indicators. Transactions on Transport Sciences, 12 (2), 1–12. https://doi.org/10.5507/tots.2021.008

Antonio, P., Silveira, M., Munhoz, A., Dias, C., Chinelli, C. K., & Azevedo, L. (2020). Smart mobility: The main drivers for increasing the intelligence of urban mobility. Transportation Research Procedia, 48, 235–246.

Arif, A. A., Falyani, F. K., Sari, V., & B, R. I. A. (2023). JakLingko: The implementation of integrated transportation approach in Jakarta smart city. Proceedings of the International Conference on Smart Cities and Sustainable Development. Atlantis Press. https://doi.org/10.2991/978-94-6463-144-9

Anam, R. K. (n.d.). Electrification: A momentum for public transport reform. ITDP Indonesia. https://itdp-indonesia.org/2024/06/electrification-a-momentum-for-public-transport-reform/

Caisip, J. R., Reyes, M. K. L., Canlas, M. A. M., Rivera, A. P. M., Canlas, I. G. Z., Lim, C. G., & Coronel, C. J. A. (2023). Simulation study: Effectiveness of unified vehicular volume reduction program (UVVRP) at Dolores Junction, San Fernando, Pampanga using PTV Vissim software. International Journal of Engineering Research and Technology, 9 (2), 755–769.

Chalermpong, S., Ratanawaraha, A., & Maneenoy, N. (n.d.). User characteristics and effectiveness of a park and ride facility in Bangkok. Journal of Transportation Research, 22 (3), 1–10.

Choosakun, A. (2021). Development of the cooperative intelligent transport system in Thailand: A prospective approach. Journal of Transportation Technologies, 11 (4), 456–468.

Congestion pricing in Bangkok. (2025). Wikipedia. https://en.wikipedia.org/wiki/Congestion_pricing_in_Bangkok

Empino, J., Junsay, J. A., & Verzon, M. G. (2023). Smart Metro: Deep learning approaches to forecasting the MRT Line 3 ridership. International Journal of Computer Science Research, 7, 1923–1936. https://doi.org/10.25147/ijcsr.2017.001.1.137

Hamamurad, Q. H. (2022). A literature review of smart city: Concept and framework. Journal of Urban Studies, March, 1–15.

Harahap, F. R. (2013). Dampak urbanisasi bagi perkembangan kota di Indonesia. Jurnal Ilmu Sosial, 1 (1), 35–45.

Jakarta jadi kota paling macet di Asia Tenggara. (2024). GoodStats. https://goodstats.id/article/jakarta-jadi-kota-paling-macet-di-asia-tenggara-9qEO8

Kalinowska, D., & Jitrpatima, I. P. N. (n.d.). Pathing the way for the Thai clean mobility programme. Changing Transport. https://changing-transport.org/pathing-the-way-for-the-thai-clean-mobility-programme/

Kok, W., Yeo, K. J., & Tan, J. (2025, March 1). Tackling Jakarta’s traffic woes with congestion pricing. Civil Service College Singapore. https://knowledgehub.clc.gov.sg/publications-library/tackling-jakarta-s-traffic-woes-with-congestion-pricing

Lessons learned from Jakarta’s journey to integrated and resilient transport systems: Message from the governor. (n.d.). Government of Jakarta.

Malinjasari, N., Ali, B., Fatimah, S., Hamzah, M., Zuhri, A., & Khodri, M. (2025). Comparative analysis of transportation research trends in Southeast Asia: Insights and unique issues in Malaysia. International Journal of Research in Social Sciences, 9 (2454), 4797–4808. https://doi.org/10.47772/IJRISS

Mengurai kemacetan, Jakarta Urban Mobility Festival 2025 resmi dibuka. (2025). Katadata ESG Index. https://green.katadata.co.id/berita/680a46b64f254/mengurai-kemacetan-jakarta-urban-mobility-festival-2025-resmi-dibuka

Moda, I., & Jakarta, T. (2020). Media Jaya.

Papadakis, D. M., Savvides, A., Michael, A., & Michopoulos, A. (2024). Advancing sustainable urban mobility: Insights from best practices and case studies. Fuel Communications, 20, 100125. https://doi.org/10.1016/j.jfueco.2024.100125

Pearl, J., & Mars, S. (2021). Media Jaya (Issue July).

Public Utility Vehicle Modernization Program. (2025). Wikipedia. https://en.wikipedia.org/wiki/Public_Utility_Vehicle_Modernization_Program

Putri, T. D. (2021). Intelligent transportation systems (ITS): A systematic review using a natural language processing (NLP) approach. Heliyon, 7 (3), e08615. https://doi.org/10.1016/j.heliyon.2021.e08615

Scheme, S. F. (2022). Building a regulatory and financial basis for Transjakarta’s first phase e-bus deployment. World Bank Transport Papers.

Science, R., & Studies, M. (2007). Smart cities: Ranking of European medium-sized cities. Centre of Regional Science, October.

Shaping the future of smart urban mobility in the Philippines. (n.d.). Asian Development Bank.

Szpilko, D., Budna, K., & Drmeyan, H. (2023). Sustainable and smart mobility. European Integration Studies, 3 (3), 584–599. https://doi.org/10.34659/eis.2023.86.3.584.

Downloads

Published

2025-06-30

How to Cite

Brezinka Ayu Perdana, Andhika Adiwidya Maheswara, & Rizal Aprianto. (2025). Strategi Penerapan Smart Mobility untuk Mengurangi Kemacetan: Studi Komparasi di Tiga Ibu Kota Negara Asean. Mitra Pilar: Jurnal Pendidikan, Inovasi, Dan Terapan Teknologi, 4(1), 27–38. https://doi.org/10.58797/pilar.0401.04